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ABSTRACT 
 
Object tracking based on ultrasound image navigation can effectively reduce damage to healthy 

tissues in radiotherapy. In this study, we propose a deep Siamese network based on feature 
fusion. Whilst adopting MobileNetV2 as the backbone, an unsupervised training strategy is 

introduced to enrich the volume of the samples. The region proposal network module is 

designed to predict the location of the target, and a non-maximum suppression-based post-

processing algorithm is designed to refine the tracking results. Moreover, the proposed method 

is evaluated in the Challenge on Liver Ultrasound Tracking dataset and the self-collected 

dataset, which proves the need for the improvement and the effectiveness of the algorithm. 
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1. INTRODUCTION 
 

Respiratory motion negatively affects radiotherapy for liver tumors. Doctors typically enlarge the 

radiation margin to ensure that the tumor receives adequate radiation. However, enlarging the 
radiation margin can harm surrounding tissues [[1]]. Generally, patients are instructed to hold 

their breath during radiation. As completion of the radiotherapy in one breath-holding period is 

impossible, doctors stop the treatment frequently and retarget the tumor with the radiation source 

at the start of a new round of radiation treatments [[2], [3], [4], [5]]. This approach is time-
consuming and difficult. Implantation of invasive markers was also attempted, but invasive 

surgery causes additional damage to patients [[6], [7], [8]]. 

 
In recent years, ultrasound navigation was utilized to predict the location of tumors in real-time, 

in which the radioactive source is controlled to follow a tumor’s movement [[9]]. However, the 

acoustic reflectivity of liver tumors is similar to that of surrounding tissues [[1]], making it 
difficult to locate the tumor directly based on ultrasound images. Other anatomical structures 

were used to predict the location of tumors. Among them, liver vessels have an acoustic 

reflectivity contrasting that of surrounding tissues; thus, liver vessels are typically chosen as 

targets for ultrasound tracking [[10], [11]].  
 

Previously, matching or registration algorithms were typically employed to track liver vessels 

[[12], [13], [14]]. Researchers introduced Siamese networks to ultrasound tracking, as such 
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networks excel in visual object tracking. Liu et al. (2019) proposed the cascaded SiamFC 
algorithm and designed a two-stage cascaded Siamese network to improve the tracking accuracy 

of the network, thereby ranking first in the Challenge on Liver Ultrasound Tracking(CLUST) 

2015 competition [[15]]. 

 
Recently, a network architecture similar to AlexNet was widely applied as the backbone of 

network[[15], [16], [17], [18]]. This fact inspires us to apply a highly sophisticated architecture to 

ultrasound tracking. However, two major obstacles exist in the application of a very deep 
network in ultrasound tracking. Firstly, the lack of annotated data makes training a general model 

difficult. Secondly, distractors confuse trackers [[15]]. As it shows in Figure 1, the distractors in 

the left image are more similar to the target in the right image than that in the left image, because 
the appearance of the target changes, thereby making tracking difficult. 

 

To overcome the two aforementioned problems, an unsupervised training strategy is introduced 

to expand the volume of the samples. MobileNetV2 is adopted as the backbone of the SiamRPN-
based tracker and the output feature of the backbone is fused for better discrimination. A post-

processing algorithm based on non-maximum suppression (NMS) is proposed to eliminate 

distractors. 
 

 
 

Figure 1. Two frames ofan ultrasound sequence, in which the green bounding boxes mark the targets, and 

the red bounding boxes mark the distractors. 

 

In this work, we propose an original tracking algorithm based on feature fusion to solve the 

aforementioned problems. The contributions of this work are summarized below. 
 

1) A network model based on feature fusionis proposed. Local features and semantic features 

are integrated to improve the discriminative ability of the algorithm.  
2) A training strategy combining supervised and unsupervised methods is proposed. 

Unsupervised training methods can increase the volume of samples, thereby enabling the 

algorithm to learn substantial general features. 
3) A post-processing algorithm based on NMS is proposed. Spatial information and temporal 

features are utilized to eliminate distractors, which can improve the accuracy and 

robustness of the tracker. 

 
In the next section, the development of visual object tracking and ultrasound tracking is 

reviewed. The proposed method will be introduced in detail in section 3. The experiments and 

their results are reported in section 4. In section 5, the advantages and limitations are concluded. 
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2. RELATED WORKS 
 
Visual target tracking is a classic computer vision problem. Tracking algorithms such as sparse 

coding [[19]], Kalman filters [[20]], mean shift [[21], [22]] and so on model the target then locate 

the most similar area in the search image. Algorithms using this tracking method are called 

generative algorithms. Such algorithms generally do not require training, but their performance 
depends on the parameters set empirically by the researcher. With the introduction of KCF [[23]], 

discriminative algorithms attracted researchers’ attention. Discriminative algorithms focus on the 

difference between target and background. Compared with generative algorithms, discriminative 
algorithms pay attention to negative samples, which leads to better performance. With the 

increasing numbers of proposed datasets and benchmarks [[24], [25]], deep features based on 

statistics gradually replaced handcrafted features [[26], [27]]. Deep features are extracted by 

convolutional neural network (CNN), and weights of network are optimised based on a huge 
amount of data. Thus, deep features are more robust than handcrafted features. The combination 

of deep features with discriminative algorithms spawned many remarkable algorithms, such as 

MDNet [[28]], ECO [[27]], SiamFC [[29]] and SiamRPN++[[30]], which all achieved SOTA in 
competitions [[31], [32], [33]]. 

 

Ultrasound tracking algorithms combine the characteristics of ultrasound images and are affected 
by the development of object tracking algorithms for natural images. 

 

A similar process can be seen in ultrasound tracking. Previously, tracking was generally 

considered as a registration or matching problem in ultrasound sequences [[1]]. Hallack et al. 
(2015) used LogDemons as a registration framework to solve the problem of target tracking [[12] 

]. Similarly, Shepard et al. (2017) employed image block matching to track a target [[13]]. 

Williamson et al. (2017) integrated dense optical flow, template matching, and image intensity 
information for hybrid tracking [[14]]. The aforementioned algorithms are training-free. 

However, as most matching and registration tasks are performed offline, such algorithms do not 

pay attention to real-time performance. Meanwhile, ultrasound tracking also draws on the 
development of visual object tracking. For example, in 2015, Kondo improved the KCF 

algorithm for ultrasound tracking [[34]]. Moreover, Shen et al. (2018) and Jeungyoon et al. 

(2019) adopted a CNN-like architecture to extract features and constructed correlation filters to 

process the features [[16], [17]]. Gomariz et al. (2018) added prior location information 
prediction to SiamFC [[18]]. Liu et al. (2019) proposed the cascaded SiamFC algorithm based 

onSiamFC, which won first place in the CLUST 2015 competition and has yet to be surpassed 

[[15]]. 
 

3. METHOD 

 

The network structure proposed in this study is illustrated in Figure 2. The network uses 

MobileNetV2 [[35]       ] as the feature extractor. As the third-, fifth- and seventh-layer features 
outputted by the network have the same size, they can be stacked easily for feature fusion. 

Inspired by SiamRPN++ [[30]], a depth wise cross-correlation structure is adopted for the 

discrimination, and the two branches are designed for precise positioning. The difference 
between SiamRPN++ and the proposed network structure is that the stacked features are inputted 

directly into the two branches, which means that convolution layers are utilized to integrate the 

semantic and local features. 
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Figure 2.Theproposed network architecture; the left sideshows the network architecture; the right 

sideshows the classification and regression branches in RPN module. 

 

In addition to the network structure, a post-processing algorithm is proposed based on NMS, 
which plays a positive role in suppressing distractors. 

 

3.1. Network Architecture 
 

The proposed network structure uses the pretrained MobileNetV2 as the feature extractor. 

MobileNetV2 employs deep separable convolutions to construct an inverted residual block that 
maps the high-dimensional image space to the low-dimensional feature space. This design 

demonstrates a satisfactory balance between performance and computational cost. Meanwhile, 

the last few inverted residual blocks of MobileNetV2 output tensors with the same scale, which 
provide convenience for the feature fusion. 

 

Feature fusion of different depths was proven to be effective for tracking. The stacked features 

are integrated into the RPN. Compared with SiamRPN++, the adjust layers are removed from the 
RPN module in the proposed structure. Based on experiments, removal of the adjustment layer 

can prevent overfitting. The depth-wise correlation layer first convolves the stacked features with 

a 3 × 3 kernel to 256 channels, integrating the feature output to each layer. After the correlation, 
fully convolutional layers are built as the head modules. The two-branch head modules predict 

the position and score for each subregion. 

 

3.2. Mixed Training Strategy 
 

As the network outputs the classification and regression results, the loss function of the network 
must consider the output of the two branches, and the loss value of the classification branch 

adopts a cross-entropy form. 

 

𝐿𝑐𝑙𝑠  = −
1

𝑁
∑ [𝑦𝑖𝑙𝑜𝑔(𝑦�̂�) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦�̂�)]𝑁

𝑖=1 , 

 

where 𝐿𝑐𝑙𝑠 represents the loss value of the classification branch of the network, 𝑦𝑖 is the result 

marked at coordinate 𝑖 and 𝑦�̂� is the predicted value of the classification branch. 
 

The loss of the regression branch uses𝐿1 loss, as follows: 

 

𝐿𝑟𝑒𝑔  = −
1

𝑁
∑ |𝑟𝑖 − 𝑟�̂�|

𝑁
𝑖=1 , 
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where 𝐿𝑟𝑒𝑔 represents the loss value of the classification branch of the network, 𝑦𝑖 is the result 

marked at coordinate 𝑖, and 𝑦�̂� is the predicted value of the classification branch. 

 

Finally, the network loss can be written as follows: 
 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑟𝑒𝑔 . 

 

 
 

Figure 3. Data generated by the unsupervised strategy; the green crosses mark the key points extracted by 

SURF, and the green circles indicate the one-quarter size of the key points. 

 

As a typical network using padding, the MobileNetV2 network does not have a shift-invariant 

characteristic. A large range of random shifts must be set during the training phase to prevent the 
network from collapsing into the center bias. 

 

To increase the generalization ability of the network, unsupervised training is added to the 
previous training strategy. SURF algorithm is utilized to extract the key points from the 

ultrasound image then select the high response key points with large feature size and far from the 

ultrasound image boundary as the training sample. Figure 3 shows the key points extracted by an 

unsupervised strategy in an ultrasound image. During the training, the regions around the key 
points are cropped as target images and search images. The samples generated by the 

unsupervised algorithm and the samples manually labeled are mixed and added to the data loader. 

Without the unsupervised strategy, the tracker would propose objects likely to be vessels instead 
of objects likely to be the target. As the objects labeled in the dataset are nearly all vessels, the 

addition of the unsupervised strategy will prevent the algorithm from overfitting the labeled 

objects. 
 

3.3. Tracking Inference Phase 
 

To estimate the location of the target, the region of interest (ROI) is divided into 25 × 25 

subregions, and the RPN outputs a score and a location for each subregion. The score represents 

the probability of the target appearing in the subregion, and the location indicates where the 

target is most likely to appear in the subregion. 
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Figure 4. Tracking inference phase; image (a) shows several proposals generated by RPN; image (b) shows 

the post-processing algorithm dealing with the proposals. 

 
Figure 4 shows the selection of proposals using NMS-based post-processing algorithms. Figure 

4(a) shows several proposals generated by RPN. In Figure 4(a), the rectangles represent the 

subregions, the values annotated in the rectangles indicate the scores of the proposal, the crosses 
mark the proposed locations. The range and proposal of the same subregion are presented in the 

same color. Figure 4(b) shows the post-processing algorithm separates different proposals into 

targets, distractors, and redundant proposals that represent the same object. As there could be 
several proposals that represents the same objects, the key to improving the accuracy of the 

tracker is finding the proposal closest to the real target location among them. Inspired by the 

NMS algorithm, an appropriate algorithm for screening the proposals is designed. Firstly, the 

low-response proposals are excluded, which are not presented in Figure 4(b). Secondly, the 
proposals close to the proposal with a maximum response are filtered out, which are marked with 

red rectangles in Figure 4(b). Finally, the proposal closest to the tracking result of the previous 

frame is selected as the tracking result of the current frame, which is marked with a green 
rectangle in Figure 4(b). Those filtered out in the last step are marked in yellow rectangles in 

Figure 4(b). All rectangles in Figure 4(b) represent the location of the proposals. 

 

NMS-based post-processing strategies can explicitly suppress distractors. When all the proposals 
have a low response, this strategy ensures that the tracker outputs an appropriate result. As the 

tracker will extract the ROI based on the result of the previous tracking frame, losing the target 

would be catastrophic for the subsequent tracking. The proposed method can effectively avoid 
this problem. Compared with the post-processing strategy based on the Hanning window, the 

proposed method is more robust. 

 

4. EXPERIMENTS 

 
The trained MobileNetV2 in SiamRPN++ is utilized as the initial weights of the backbone and 

fine-tune the network with the mixed training strategy mentioned in the previous section. The 

warm up learning rate is set to make the learning rate decay exponentially from 0.005 to 0.0005 
during the training. In addition, the optimizer is SGD. 

 

During the training process, a total of 20 epochs is performed. In the first 10 epochs, only the 
weights of the RPN are optimized. In the last 10 epochs, the last five inverted residual blocks and 

the RPN are optimized together. The sizes of the target images and search images are set to 

127 × 127 and 255 × 255.  
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Following the standard of the CLUST 2015 and VOT 2015, the locations predicted by the tracker 
are compared with the ground truth. Criteria are calculated and plots are drawn below. 

 

The proposed method is built with Python. And the experiments are implemented on a computer 

with an Intel i7 processor, 32 GB of RAM, and an Nvidia GTX 1080 graphic card. 
 

4.1. Data 
 

Experiments are performed on two datasets, which are, the published CLUST 2D Training 

Dataset and the self-collected dataset. 

 
The CLUST dataset provides 24 2D ultrasound sequences with public annotations. The 

ultrasound sequences were acquired from patients during free breathing with various equipment, 

leading to sequences with different temporal and spatial resolutions. Approximately 10% to 13% 
of the frames in each sequence are annotated. Moreover, multiple targets may be labeled in a 

sequence. The dataset is annotated manually with the target location by three observers and 

verified by an additional observer. The ground truth of the dataset is the mean of the three manual 
annotations. 

 

The self-collected dataset is acquired using a Philips scanner. The self-collected dataset consists 

of 10 sequences with temporal resolutions from 27 Hz to 30 Hz and spatial resolutions from 

0.16 mm × 0.16 mm to 0.27 mm × 0.27 mm. All the data are annotated following the method 

of CLUST dataset. When collecting ultrasound sequences for CLUST 2D Training Dataset, 

coughing and other emergencies sometimes cause discontinuities in the sequence. In the self-
collected dataset, those discontinuous sequences are filtered out for better quality. 

 

4.2. Evaluation Criteria 
 

To evaluate the proposed method, two types of experiments are designed, which are, a cross-

validation in the CLUST 2D Training Dataset and an evaluation in the self-collected dataset. 
 

Specifically, a sixfold cross-validation in the CLUST 2D Training Dataset is performed. The 

dataset is divided into six groups. All the models are fine-tuned into five groups then evaluated in 

the remaining group. In the evaluation in the self-collected dataset, the model is fine-tuned first in 
the CLUST 2D Training Dataset. 

 

To compare the various trackers comprehensively, two evaluation methods are designed. 
Following the criteria of the CLUST dataset, the trackers are evaluated in all the sequences with 

only one initialization [[1]]. Given annotations 𝑙𝑖 and tracking results 𝑥𝑖 for target 𝑖, tracking 

error 𝐸𝑖 at time 𝑡 is calculated as 

𝐸𝑖(𝑡) = ‖𝑙𝑖 − 𝑥𝑖‖, 
 

where ‖∙‖ represents the Euclidean distance. The tracking errors are summarised by the mean, 

standard deviation, and 95th percentile of the Euclidean distance for all the frames. 
 

Inspired by the criteria of VOT 2015 [[31]], an evaluation experiment is designed using a 

different method. After initialization at the first frame, the tracker is reinitialized when it loses the 
target. The failures are counted to measure the robustness of the tracker. In addition, the average 

overlap between the predicted target bounding boxes and annotations is calculated, which is 

defined as accuracy. 
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The expected average overlap (EAO) is the average of the expected overlap in an interval [Nl, 𝑁ℎ] 
of typical sequence lengths. The expected overlap of 𝑁𝑠is calculated by averaging the overlap in 

all available 𝑁𝑠-length sequences. To get the typical sequence length, the probability density 

function (PDF) of the sequence lengths is computed via kernel density estimation. Figure 5 

presents the estimated PDF of the sequence lengths in the self-collected dataset. As it shows, the 

typical length is in the interval of [121, 308]. The probability of the sequence length being a 

typical length is 50%.  

 

 
 

Figure 5. Estimated PDF of sequence lengths in the self-collected dataset; the sequence length in the 

dataset is marked by dotted lines. 

 

4.3. Cross Validation in CLUST Dataset 
 

A sixfold cross-validation is performed in the CLUST 2D Training Dataset to compare the 

performance of the proposed model with that of several representative methods. Figure 6 presents 
the success plots and precision plots of the proposed method and several representative methods, 

including SiamRPN++, SiamFC, DiMP18, PrDiMP18, and KYS, and shows that the proposed 

method generates superior results in terms of overlap success. 
 

 
 

Figure 6. Success plots and precision plots of the proposed method and several representative methods. All 

the trackers are evaluated in the CLUST dataset via cross-validation. 
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Table 1 reports the mean, standard deviation, and 95th percentile of the tracking error of each 
tracker evaluated in the CLUST dataset via cross-validation. Table 2 shows the accuracy, failure, 

and EAO of each tracker evaluated in the CLUST dataset via cross-validation. The tables reveal 

that the proposed method obtains a minimal mean error and maximal accuracy. 

 
Table 1. Mean error (Mean), standard deviation (Std) and 95th percentile (TE95th) of each tracker 

evaluated in CLUST dataset via cross validation 

 

Tracker Mean (mm) Std (mm) TE95th (mm) 

The Proposed Method 0.8582 1.7042 1.9410 

SiamRPN++ 1.3622 4.7684 1.7851 

SiamFC 1.4086 3.3518 2.5030 

DiMP18 1.3864 3.8717 2.5193 

PrDiMP18 1.5818 4.5768 2.7775 

KYS 1.0856 0.9283 2.5882 

 

Table 2. Accuracy, failure and EAO of each tracker evaluated in CLUST dataset via cross validation 

 

Tracker Accuracy Failure EAO 

The Proposed Method 0.8690  7 0.8322  
SiamRPN++ 0.8655  8 0.8492  

SiamFC 0.8479  14 0.8120  

DiMP18 0.8449  2 0.8541  
PrDiMP18 0.8564  27 0.7698  

KYS 0.8230  2 0.8207  

 

4.4. Evaluation of Trackers in Self-collected Dataset 
 

The trackers are further evaluated by fine-tuning them in the CLUST dataset then evaluating 

them in the self-collected dataset. Figure 7 presents the success plots and precision plots of the 
proposed method and several representative methods, including SiamRPN++, SiamFC, DiMP18, 

PrDiMP18, and KYS, and shows that the proposed method demonstrates the best performance. 

 

 
 

Figure 7. Success plots and precision plots of the proposed method and several representative methods. All 

the trackers are trained in the CLUST dataset and evaluated in the self-collected dataset. 

 

Table 3 reports the mean, standard deviation, and 95th percentile of the tracking error of each 

tracker evaluated in the self-collected dataset. Table 4 shows the accuracy, failure, and EAO of 
each tracker evaluated in the self-collected dataset. Compared with the other methods, the 

proposed method obtains the best mean error, accuracy, and EAO. 
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Table 3. Mean error (Mean), standard deviation (Std) and 95th percentile (TE95th) of each tracker trained 

in the CLUST dataset and evaluated in the self-collected dataset 

 
Tracker Mean (mm) Std (mm) TE95th (mm) 

The Proposed Method 0.5745 0.4369 1.4048 

SiamRPN++ 0.6298 0.3503 1.2469 

SiamFC 1.1444 2.3535 8.0855 

DiMP18 0.6591 0.4800 1.5631 

PrDiMP18 0.8305 0.5736 1.9257 

KYS 0.7258 0.5895 1.7611 

 
Table 4. Accuracy, failure and EAO of each tracker trained in the CLUST dataset and evaluated  

in the self-collected dataset 

 
Tracker Accuracy Failure EAO 

The Proposed Method 0.8750  0 0.8782  

SiamRPN++ 0.8597  0 0.8642  

SiamFC 0.8218  2 0.8214  

DiMP18 0.8567  0 0.8002  

PrDiMP18 0.8357  51 0.3188  

KYS 0.8445  0 0.8494  

 

4.5. Visualisation 
 

The tracking results of the proposed method and SiamRPN++ from the cross-validation in the 

CLUST dataset are visualized for a representative example. The tracking trail of the trackers is 
plotted and several frames are posted with tracking results in Figure 8.Frames 0570 to 0652 show 

a distractor approaching the target, leading SiamRPN++ to drift whilst the proposed method 

tracks steadily. As shown in Figure 8, the proposed method exhibits superior capability in 
distinguishing the target from the distractors, thereby benefitting from the NMS-based post-

processing. 

 

 
 

Figure 8. Tracking trail plot and tracking results of several frames. 
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Table 5 reveals the speed of the proposed method and several representative methods. The 
proposed method is the second fastest tracker among all the listed trackers and achieves real-time, 

with 62.12 FPS. 

 
Table 5. Speed of proposed method and several representative methods 

 
Tracker Speed (FPS) 

The Proposed Method 62.12  

SiamRPN++ 61.14  

SiamFC 105.03  

DiMP18 31.59  

PrDiMP18 19.98  

KYS 17.69  

 

4.6. Ablation Study 
 
In this section, the effects of different network factors are validated. Several trackers composed 

of different factors are evaluated using the same two methods employed in the previous 

experiments. Table 6 shows several criteria of each tracker evaluated via cross-validation. Table 
7 presents several criteria of each tracker evaluated in the self-collected dataset. The tables reveal 

that the unsupervised strategy, feature fusion, and NMS post-processing contribute to the 

satisfactory performance of the proposed method. 
 

Table 6: Network factors, accuracy and failure of several trackers evaluated in CLUST dataset  

via cross validation 

 

Tracker 
Unsupervised 

strategy 

Feature 

fusion 

Using 

NMS 
Accuracy Failure 

The Proposed Method √ √ √ 0.8690 7 

The Proposed Method (only trk)  √ √ 0.8340 43 

The Proposed Method (no fuse) √  √ 0.8655 8 

The Proposed Method (no nms) √ √  0.8472 24 

SiamRPN++    0.8655 8 

 
Table 7: Network factors, accuracy and failure of several trackers trained in CLUST dataset and evaluated 

in self-collected dataset 

 

Tracker 
Unsupervised 

strategy 

Feature 

fusion 

Using 

NMS 
Accuracy Failure 

The Proposed Method √ √ √ 0.8750 0 

The Proposed Method (only trk)  √ √ 0.8041 0 

The Proposed Method (no fuse) √  √ 0.8597 0 

The Proposed Method (no nms) √ √  0.8746 0 

SiamRPN++    0.8597 0 

 

5. CONCLUSIONS 

 

In this paper, the obstacles for utilizing a highly sophisticated architecture in ultrasound tracking 

are analyzed. Firstly, an unsupervised training strategy is introduced to solve the problem of the 

lack of labeled data. Secondly, an RPN module is employed to predict the possible location of the 
target. Thirdly, feature fusion and NMS-based post-processing are proposed to improve the 

algorithm’s robustness to distractors. Finally, an end-to-end network architecture is built with a 
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unique training strategy. Moreover, a large number of experiments are conducted based on the 
CLUST and the self-collected dataset, which proves our improvement of the performance of the 

algorithm. 

 

This work provides a solution to the problem of applying very deep network structures to 
ultrasound tracking. In addition to the unsupervised training method that solves the lack of 

samples, other improvements are also proven to refine the accuracy of the algorithm. The 

proposed method gets accurate tracking results with a speed of 62.12 fps, which is surplus to 
ensure the real-time performance of the system. 

 

For the lack of utilizing prior knowledge of ultrasound sequences, there is still much room to 
improve the proposed method. As our algorithm suppresses the distractors with the continuity of 

the sequence, the problem of distractors is not solved completely. And it also leads to dependence 

on the continuity of the sequence, which is difficult to guarantee during ultrasound acquisition. In 

the future, we will combine the characteristics of ultrasound images and the temporal and spatial 
characteristics of respiratory motion to further improve the accuracy and robustness of the 

algorithm. 
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