
David C. Wyld: CSITY, NWCOM, SIGPRO, ASOFT, AIFZ, BDIoT, ITCCMA, CLSB, DTMN, MLNLP - 2021
pp. 125-145, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111412

DMC: DECENTRALIZED MIXER WITH

CHANNEL FOR TRANSACTION PRIVACY

PROTECTION ON ETHEREUM

Su Liu and Jian Wang

College of Computer Science and Technology, Nanjing University

of Aeronautics and Astronautics, Nanjing, China

ABSTRACT

Ethereum is a public blockchain platform with smart contract. However, it has transaction

privacy issues due to the openness of the underlying ledger. Decentralized mixing schemes are

presented to hide transaction relationship and transferred amount, but suffer from high

transaction cost and long transaction latency. To overcome the two challenges, we propose the

idea of batch accounting, adopting batch processing at the time of accounting. For further

realization, we introduce payment channel technology into decentralized mixer. Since

intermediate transactions between two parties do not need network consensus, our scheme can

reduce both transaction cost and transaction latency. Moreover, we provide informal definitions

and proofs of our scheme's security. Finally, our scheme is implemented based on zk-SNARKs
and Ganache, and experimental results show that the higher number of transactions in batch,

the better our scheme performs.

KEYWORDS

Ethereum, transaction privacy, decentralized coin mixer, payment channel, zero-knowledge

proof.

1. INTRODUCTION

During the past few years, the blockchain technology has drawn tremendous interests from IT

industries (e.g. Google, Alibaba and Amazon) to financial institutions (e.g., Goldman Sachs and

JP Morgan). Currently, main application areas of blockchain involve finance, payment, data

services and so on. Especially in the financial industry, transaction is a significant component,
representing the main financial activity of enterprises and individuals. The importance of data

places great demands on security and privacy of blockchain.

Ethereum is a distributed append-only public transaction ledger maintained by consensus

protocols. However, it suffers from transaction privacy leakage [1], [2] due to the decentralized

nature of blockchain. Though the generated account addresses are pseudonymous, but it is

possible to link these addresses with real world identities by deanonymization techniques, such as
address clustering [3], [4] and transaction graph analysis [5]. Furthermore, transaction

relationship and transferred amount between users can be directly obtained via analysing the

underlying public ledger, and moreover, attackers can infer users’ income levels, spending habits,
etc. Therefore, the openness and sensitiveness of transaction information force Ethereum

community to design solutions to guarantee transaction privacy.

http://airccse.org/cscp.html
http://airccse.org/csit/V11N14.html
https://doi.org/10.5121/csit.2021.111412

126 Computer Science & Information Technology (CS & IT)

Recently, some schemes and projects [6]-[9], [11], [13]-[15] have been proposed, attempting to
solve the privacy problem while ensuring the verifiability of transactions and the reliability of the

ledger. Among them, the main method is coin mixer [8], [9], [11], [13]-[15], where senders

deposit some coins into a centralized third party or a smart contract, then the third party or

contract transfers the equivalent coins to receivers when they withdraw from the mixer. These
mixing mechanisms can be categorized in two classes: (i) centralized mixer, simple but lack of

security and privacy; (ii) decentralized mixer, secure but heavy computation. In the following, we

will focus on the problem of decentralized mixer.

In the decentralized mixer with any mixing amount, compared with fixed mixing amount, there

are three main operations: (i) deposit, the sender deposits some coins into mixer contract in the
form of note; (ii) transfer, the sender exploits created notes inside the contract to transfer to the

recipient; (iii) withdraw, the recipient redeems the corresponding coins from the contract.

Notably, the verification of transactions generated by the above three operations will consume

hundreds of thousands gas for heavy cryptographic computation. Moreover, the high gas price
(about $24/106 gas at the time of writing) due to expensive computing resources will impose a

further cost burden. On the other hand, the transaction latency due to the underlying mechanism

(block time interval of about 15 seconds and transaction confirmation time of about 10 minutes
[16]) and network congestion is also intolerable. In all, the costly transaction fee (equal to the

multiplication of gas used and gas price) and the long transaction latency make it challenge to put

the decentralized mixing scheme into practice.

To address the aforementioned issues, we introduce the concept of batch accounting. It means

that not every time a transaction occurs, it is submitted to the blockchain, but when several

transactions are completed, the final transaction result is recorded on the blockchain. Inspired by
payment channel technique, whose key idea is to only record the final transaction result on the

blockchain, ignoring intermediate transaction process between two parties, we employ payment

channel as the technical support behind batch accounting, proposing a decentralized mixer with
channel (DMC). The original transfer operation in the above mixing scheme is completed

through payment channel, i.e., off-chain transmission of transaction messages. More specifically,

when need to transact, the sender utilizes notes in mixer contract to create a channel note, served

as a payment channel. The deposit in the channel is equal to the denomination of the channel
note. Then via the channel, the sender creates new transactions (including the total amount that

the sender needs to transfer to the recipient so far) and sends them directly to the recipient

through anonymous network. After receiving a transaction, the recipient verifies and decides
whether to accept it. Essentially, the transaction between two parties is the redistribution of the

deposit in the channel. When not need the channel again, the recipient closes the channel by

posting the latest received transaction to blockchain.

Since intermediate transactions between two parties do not go through the Ethereum network, no

decentralized consensus is required. Hence, our scheme can achieve the reduction in transaction

cost and latency. Specifically, due to being free from the influence of underlying mechanism and
network congestion, the latency of off-chain transactions can be decreased to the communication

delay of anonymous network. On the other hand, although the recipient still needs to verify the

correctness of off-chain transactions, the verification is performed locally rather than on the
Ethereum virtual machine (EVM), so our scheme gets rid of the expensive computing resources

on Ethereum and achieves very low transaction cost. Compared with original transactions, the

cost and latency of off-chain transactions are both negligible.

Contributions. In summary, the main contributions of this paper are as follows.

Computer Science & Information Technology (CS & IT) 127

(1) We propose the idea of batch accounting and construct a decentralized mixer with channel
called DMC, which reduces transaction cost and latency while hides the transaction

relationship and transferred amount. Our scheme is suitable for frequent transactions

between senders and recipients. Because there is no need for network consensus for most

transactions of two parties, the reduction in cost and latency is achieved.

(2) We implement DMC based on zk-SNARKs and Ganache, and conduct a number of

experiments to evaluate its performances. The results show that our scheme is feasible.
Combined with theoretical and experimental analysis of DMC, we can get the average

transaction cost and transaction latency are both approximately 1/ 𝑛 of other mixing

schemes, 𝑛 denoting the unfixed number of transactions in batch.

Paper Organization. The rest of the paper is organized as follows. Section 2 provides some

background on Ethereum and payment channel, and explains the cryptographic primitives.

Section 3 describes the decentralized mixing scheme. Then, we construct our scheme DMC based
on the above decentralized scheme in Section 4. Furthermore, Section 5 details the

implementation of DMC, evaluates its performance, and draws comparisons with other schemes.

The related work is reviewed in Section 6. Finally, we conclude this paper in Section 7.

2. PRELIMINARIES

In this section, we outline the related background of Ethereum and payment channel. In addition,

we describe the cryptographic primitives for DMC: commitment scheme, public key encryption
scheme and zero-knowledge proof zk-SNARKs.

2.1. Ethereum

In Ethereum, account is an important concept, indexed by address. There are two types of

accounts — Externally Owned Account (EOA), representing a user with a pair of public key 𝑝𝑘

and secret key 𝑠𝑘; and contract account, representing a smart contract with code and storage. The

interaction between accounts is made through transactions generated by EOA. A transaction is

composed of the destination account address, the transferred amount 𝑣, an optional data field

𝑑𝑎𝑡𝑎 (specifying the called function and the passed parameters), and a signature, etc. In this

paper, we denote a specific transaction by tx = (𝑑𝑎𝑡𝑎).; if the transferred amount 𝑣 exists, it

should be pointed out in addition. Each transaction needs to pay a certain transaction fee for

operations made in the transaction, which uses gas as the unit for measuring the computational
and storage resources. Take some contract operations for example, storing costs 20,000 units of

gas while writing and reading cost 5,000 and 200 respectively [18].

2.2. Payment Channel

The payment channel technology [19], [20] is an important proposal to address the challenges of
the scalability and transaction fee. Lightning network [21] and Raiden network [22] are popular

examples deployed on Bitcoin and Ethereum respectively. In Bitcoin or Ethereum, a payment

channel is corresponding to a multi-signature address or a smart contract. The payment channel
technique includes three procedures: (i) opening a channel, the sender deposits into a multi-

signature address/smart contract to create a payment channel; (ii) off-chain transactions, the

sender sends signed transaction messages directly to the recipient without passing through the

blockchain network; 3) closing a channel, the recipient withdraws from the channel and the
remaining coins are returned to the sender. Essentially, the transactions between the two parties

are the redistribution of the deposit in the channel.

128 Computer Science & Information Technology (CS & IT)

2.3. Cryptographic Building Blocks

Next, we will describe the cryptographic building blocks involved in our scheme. More details

about these cryptographic primitives are available in [23]. In the following, λdenotes the security
parameter and CRH denotes collision-resistant hash function.

Commitment Scheme. A commitment scheme is composed of two algorithms (Comm, Open)
such that:

•𝑐𝑚 ← Comm (𝑚, 𝑟): given message 𝑚 and randomness 𝑟, output commitment 𝑐𝑚.

• {0, 1} ← Open (𝑐𝑚,𝑚, 𝑟): given commitment 𝑐𝑚, message 𝑚 and randomness 𝑟, output 1 if

𝑐𝑚= Comm(𝑚, 𝑟) and 0 otherwise.

For the purposes of this paper, we will use the commitment scheme which is statistically binding

and computationally hiding.

Public Key Encryption Scheme. A public key encryption scheme comprises a triple of

algorithms (KeyGen, Encrypt, Decrypt) such that:

•(𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆): given security parameter 1𝜆, output a pair of public key 𝑝𝑘 and secret

key 𝑠𝑘.

•𝑐 ← Encrypt (𝑝𝑘,𝑚): given public key 𝑝𝑘 and plaintext 𝑚, output ciphertext 𝑐.

•𝑚 ← Decrypt (𝑠𝑘, 𝑐): given secret key 𝑠𝑘 and ciphertext 𝑐 , output plaintext 𝑚 or an invalid

symbol ⊥.

In this paper, we directly adopt user's public and secret key on Ethereum. So, it's a good choice to

use eciespy [24], an Elliptic Curve Integrated Encryption Scheme for Ethereum.

Non-Interactive Zero-Knowledge Proof (NIZK). A non-interactive zero-knowledge proof is a
two-party protocol between a prover and a verifier with two stages. At the proving stage, the

prover uses private data to generate the proof without interaction with the verifier. At the

verifying stage, the verifier checks the validity of the proof while obtaining no more information.

Let ℛ be a binary relation for instance 𝑥 and witness 𝜔, and let ℒ be corresponding language ℒ =
{𝑥 | ∃𝜔: (𝑥, 𝜔) ∈ ℛ}. NIZK is a protocol where a prover tries to convince a verifier that an

instance 𝑥 is in the language ℒ. In addition, NIZK can permit proving computational statements,
but the computational problem needs to be converted into an arithmetic circuit.

A NIZK for arithmetic circuit 𝒞 consists of four algorithms (Setup, KeyGen, Prove, Verify) such

that:

• (𝑝𝑝) ← Setupzkp(1
𝜆): given security parameter λ, output public parameters 𝑝𝑝.

• (𝑝𝑘, 𝑣𝑘) ← KeyGenzkp(𝑝𝑝,𝒞): given 𝑝𝑝 and arithmetic circuit 𝒞, output proving key 𝑝𝑘 and

verification key 𝑣𝑘.

• 𝜋 ← Prove (𝑝𝑘, 𝑥, 𝜔): given proving key 𝑝𝑘, instance 𝑥 and witness 𝜔, output non-interactive

proof 𝜋 if (𝑥, 𝜔) ∈ ℛ.

• (0, 1) ← Verify (𝑣𝑘, 𝑥, 𝜋): given verification key 𝑣𝑘, instance 𝑥, and a proof 𝜋, output 1 if 𝑥 ∈
ℒ; otherwise 0.

Computer Science & Information Technology (CS & IT) 129

In this paper, we use zero-knowledge Succint Non-interactive ARgument of Knowledge (zk-
SNARK), the most preferable NIZK that has succinct proof size and sublinear verification time.

zk-SNARK satisfies the following properties: completeness, succinctness, soundness and zero-

knowledge.

3. DECENTRALIZED MIXER

In this section, we present a general decentralized mixing scheme by summarizing existing

mixing schemes. It utilizes commitment scheme to hide the transaction information and
meanwhile applies zero-knowledge proof to ensure the validity of transactions. We firstly provide

data structures used in decentralized mixer, then describe its mixing mechanism.

3.1. Data Structures

Note. Like a cheque, a note 𝑛𝑜𝑡𝑒 includes an owner 𝑝𝑘, a denomination 𝑣 and a random number

𝑟 (to ensure the uniqueness), i.e., 𝑛𝑜𝑡𝑒 = (𝑝𝑘, 𝑣, 𝑟). The following two concepts are associated to

a note.

• Commitment, 𝑐𝑚 = Comm (𝑝𝑘, 𝑣, 𝑟): obviously, a commitment 𝑐𝑚 is the commitment to a note

𝑛𝑜𝑡𝑒 = (𝑝𝑘, 𝑣, 𝑟), used to hide specific information of the note.

• Serial number, 𝑠𝑛 = CRH (𝑠𝑘, 𝑟): a serial number 𝑠𝑛, also called nullifier, is the hash of 𝑟 and

the secret key 𝑠𝑘 corresponding to 𝑝𝑘, used to prevent double-spending issues.

CMTree. CMTree denotes a Merkle tree whose leaf nodes are commitments of created notes.

The existence of commitments in CMTree are viewed as proof of ownership of coins in the

mixer. Every time a commitment is inserted, the root of CMTree is updated. These generated
Merkle roots are then added to an array, denoted by Roots.

SNSet. To prevent double-spending issues, all serial numbers of spent notes are recorded in an
array, denoted by SNSet. If the corresponding serial number is in SNSet, it indicates that the note

has been spent, otherwise the note can be spent.

3.2. The Mixing Mechanism

In Ethereum, the decentralized mixer is implemented by smart contract. Users make interactions
with the mixer contract to deposit, transfer and withdraw. The decentralized mixing mechanism,

described in Figure 1, consists of the next three components. Note that we ignore the Create

Account algorithm, because it is the same as the creation of accounts in Ethereum. The original

accounts in Ethereum are completely compatible with our scheme.

Setup. The setup algorithm is executed only once by a trusted third party (TTP) to generate

public parameters and to deploy a mixer contract. Note that the setup algorithm can use secure
multi-party computation techniques to mitigate the trust requirement for TTP.

User Algorithms. A user can run the following algorithms to interact with the mixer contract and

create valid transactions. For convenience, take sender Alice (A) and recipient Bob (B) for
instance.

• Deposit: The Deposit algorithm is to convert some Ether into an equivalent note, e.g., Alice

deposits 𝑣 Ether to mixer.
• Transfer: The Transfer algorithm is to destroy some old notes and create some new notes. For

example, Alice uses her two notes to transfer 𝑣𝐵 Ether to Bob.

130 Computer Science & Information Technology (CS & IT)

• Withdraw: The Withdraw algorithm is to redeem some note into equivalent Ether, e.g., Bob

redeems 𝑣𝐵 Ether from mixer.

Mixer Contract. Firstly, users use one of three algorithms mentioned above to generate

corresponding transactions, and send them to the blockchain network. After users submitting
transactions, the mixer contract verifies and conducts related operations according to the Verify

Transaction algorithm. Specifically, the mixer contract is responsible for verifying the correctness

of transactions (e.g., verifying zero-knowledge proofs and serial numbers), and if passing the
verification, making corresponding changes (e.g., inserting new commitments into CMTree and

serial numbers into SNSet).

4. DMC: DECENTRALIZED MIXER WITH CHANNEL

The section gives a detailed description of our scheme based on the decentralized mixing scheme

in Section 3. We first discuss the intuition of the scheme based on the next three attempts, then

Figure 1. Decentralized mixer mechanism.

describe the specific construction of the scheme Π = (Setup, Deposit, Open-Channel, Offchain-
Transfer, CloseChannel, Withdraw, VerifyTransaction, VerifyOffchainTransfer). At last, we

provide the security definitions and proofs of our scheme.

Computer Science & Information Technology (CS & IT) 131

4.1. Overview

For further realization of batch accounting, we apply the payment channel technology to the
decentralized mixer. Specifically, some changes are made to the transfer operation of

decentralized mixer. Here, we outline our construction in three incremental steps; the

construction details see below. Note that the scheme of ZETH [11] is taken as base for the

design of our proposed work.

Attempt 1: the basic framework. We first describe the basis framework of our scheme and

point out its existing problems. Inspired by existing payment channel schemes in Bitcoin and

Ethereum, where the channel corresponds to a multi-signature address or a smart contract

respectively, we match the channel with a channel note denoted by 𝑐ℎ𝑛𝑡. In the OpenChannel

phase, sender Alice utilizes unspent notes to create a channel note as a channel, i.e., 𝑐ℎ𝑛𝑡𝐴𝐵 =
(𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵), 𝑝𝑘𝐴 denoting the owner of the channel, and 𝑣𝐴𝐵 denoting the deposit locked in

the channel later used to transfer to the recipient. In the OffchainTransfer phase, whenever Alice

needs to transfer to Bob, she firstly creates a transaction txOffchainTransfer
𝑖 =

(𝑐ℎ𝑠𝑛𝐴𝐵, 𝑐𝑚𝐵
𝑖 , 𝑐𝑚𝐴

𝑖 , 𝜋OffchainTransfer
𝑖) and a note 𝑛𝑜𝑡𝑒𝐵

𝑖 = (𝑝𝑘𝐵, 𝑣𝐵
𝑖 , 𝑟𝐵

𝑖), 𝑖 ∈ [1, 𝑛], the value 𝑣𝐵
𝑖

representing the total amount Alice needs to transfer to Bob so far, and then transfers them to

Bob through an anonymous network such as Tor [25]. The transactions between two parties are
essentially the redistribution of the deposit in the channel. In the CloseChannel phase, either of

them can post the latest transaction message to the blockchain network to get their money back.

However, the above draft may damage the interests of the recipient. The first problem with the

attempt is that the channel note may be spent many times. For example, during the transaction

between Alice and Bob, Alice utilizes the same channel note 𝑐ℎ𝑛𝑡𝐴𝐵 to transact with Carl and

generates 𝑡𝑥OffchainTransfer
′ = (𝑐ℎ𝑠𝑛𝐴𝐵, 𝑐𝑚𝐵

′ , 𝑐𝑚𝐴
′ , 𝜋OffchainTransfer

′) and a note 𝑛𝑜𝑡𝑒𝐶 =
(𝑝𝑘𝐶 , 𝑣𝐶 , 𝑟𝐶). When Carl first closes the channel, the mixer verifies and adds 𝑐ℎ𝑠𝑛𝐴𝐵 into SNSet.
And then when Bob tries to close the channel, his transaction will be rejected because the channel

note 𝑐ℎ𝑛𝑡𝐴𝐵 has been spent. The second problem is when closing the channel, if the dishonest

sender submits previous transactions not the latest transaction, i.e., txOffchainTransfer
𝑖 , 𝑖 < 𝑛, not

txOffchainTransfer
𝑛 , then the interest of recipient will be damaged due to the total transferred

amount is included in the latest transaction.

Attempt 2: maintaining the recipient's interests. We make the second attempt to address the

above challenges. To solve the double-spending problem, we require to define the channel's

recipient 𝑝𝑘𝐵, the channel note being 𝑐ℎ𝑛𝑡𝐴𝐵 = (𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵). When 𝑐ℎ𝑛𝑡𝐴𝐵 is spent to

create new note 𝑛𝑜𝑡𝑒𝑋 (X is B or C), zero-knowledge proof 𝜋OffchainTransfer is needed to prove

the recipient in 𝑐ℎ𝑛𝑡𝐴𝐵 is consistent with the owner of 𝑛𝑜𝑡𝑒𝑋. Therefore, the channel 𝑐ℎ𝑛𝑡𝐴𝐵 is

only used to transact with the recipient defined in the channel note, i.e., 𝑝𝑘𝐵. To prevent the
sender from broadcasting previous transactions, we rule that only the recipient can close the

channel. The idea is accomplished by introducing difficult problems: (i) the recipient generates a

difficult problem 𝑑𝑖𝑓𝑓𝐴𝐵 with a solution 𝑥, and only sends 𝑑𝑖𝑓𝑓𝐴𝐵 to the sender; (ii) the sender

defines 𝑑𝑖𝑓𝑓𝐴𝐵 in the channel note, i.e., 𝑐ℎ𝑛𝑡𝐴𝐵 = (𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵, 𝑑𝑖𝑓𝑓𝐴𝐵). It requires that

only the one who knows the solution to the difficult problem can close the channel, so only the

recipient can make it.

However, the second attempt may harm the interests of the sender. If the dishonest recipient

never closes the channel, the balance 𝑣𝐴𝐵 − 𝑣𝐵 in the channel will never be returned to the

sender. Not knowing the solution to the difficult problem, the sender has no choice but to wait the
recipient to close the channel. This situation will harm the sender's interests.

132 Computer Science & Information Technology (CS & IT)

Attempt 3: maintaining the sender's interests. To overcome the above shortcoming, we set a

deadline for a channel, which requires the recipient to close the channel before the deadline,

otherwise the sender will have the right to close the channel. When Alice creates a channel, she

defines a deadline 𝑑𝑑𝑙𝐴𝐵 in the channel note, i.e., 𝑐ℎ𝑛𝑡𝐴𝐵 = (𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵, 𝑑𝑖𝑓𝑓𝐴𝐵, 𝑑𝑑𝑙𝐴𝐵).
When the deadline has passed, the sender can close the channel by proving that the current time

is greater than the deadline. In order to prevent the sender from submitting the previous

transaction when closing the channel, it is required that the recipient ought to close before the
deadline.

In conclusion, we setup a one-way transaction channel from sender to recipient, which adds the
defined recipient to prevent double-spending issues; applies difficult problems to ensure the

interests of recipients; and uses the deadline to urge the recipient to close the channel on time.

4.2. Construction of DMC

In the following description, we detail the construction of DMC based on the mixing mechanism

in Section 3. A DMC scheme Π is a tuple of algorithms (Setup, Deposit, OpenChannel,
OffchainTransfer, CloseChannel, Withdraw, VerifyTransaction, VerifyOffchainTransfer).

Setup. The algorithm generates a list of public parameters. To prove the validity of transactions,
we build specific circuits which are taken to create keys for proof generation and verification.

And the mixer contract is deployed on Ethereum. The detailed process proceeds as follows:

Deposit. The algorithm builds a Deposit transaction txDeposit to convert some Ether into an

equivalent note. The transaction txDeposit is composed of these variables.

• A new note commitment 𝑐𝑚.

• A deposit value 𝑣.

• A zero-knowledge proof𝜋Deposit, proving the following equation: 𝑐𝑚 = Comm(𝑝𝑘𝐴, 𝑣, 𝑟).

The detailed process proceeds as follows:

OpenChannel. The algorithm generates a OpenChannel transaction txOpenChannel, which utilizes

𝑛 (let 𝑛 =2) notes to create a channel note. The channel note is used as a channel for later

transactions. The transaction txOpenChannel is composed of these variables.

Computer Science & Information Technology (CS & IT) 133

• Two serial numbers of spent notes 𝑠𝑛1 and 𝑠𝑛2.

• A channel note commitment 𝑐ℎ𝑐𝑚𝐴𝐵.

• A balance commitment 𝑐𝑚𝑟.

• The Merkle root 𝑟𝑡.

• A zero-knowledge proof 𝜋OpenChannel, proving the following equations.

-𝑐𝑚𝑖 = Comm(𝑝𝑘𝐴, 𝑣𝑖 , 𝑟𝑖), 𝑖 ∈ {1,2}; 𝑐𝑚𝑟 =Comm(𝑝𝑘𝐴, 𝑣𝑟 , 𝑟3).

-𝑐ℎ𝑐𝑚𝐴𝐵 = Comm(𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵, 𝑑𝑖𝑓𝑓𝐴𝐵, 𝑑𝑑𝑙𝐴𝐵).

-𝑐𝑚𝑖 ∈ CMTree, 𝑖 ∈ {1,2}.
-𝑣1 + 𝑣2 = 𝑣𝐴𝐵 + 𝑣3.

The detailed process proceeds as follows:

OffchainTransfer. The algorithm utilizes the created channel to transfer to the recipient,

generating an OffchainTransfer transaction txOffchainTransfer and a new note 𝑛𝑜𝑡𝑒𝐵 which are

sent to recipient through anonymous network. Every time the sender intends to transfer, she will

execute the algorithm, redistributing the deposit in the channel. The transaction txOffchainTransfer

is composed of these variables.

• The serial number of channel note 𝑐ℎ𝑠𝑛𝐴𝐵.

• A transfer commitment 𝑐𝑚𝐵.

• A balance commitment 𝑐𝑚𝐴.

• The Merkle root 𝑟𝑡.

•A zero-knowledge proof𝜋OffchainTransfer, proving the following equations.

-𝑐ℎ𝑐𝑚𝐴𝐵 = Comm(𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵, 𝑑𝑖𝑓𝑓𝐴𝐵, 𝑑𝑑𝑙𝐴𝐵).

-𝑐𝑚𝑖 = Comm(𝑝𝑘𝑖 , 𝑣𝑖 , 𝑟𝑖), 𝑖 ∈ {𝐴, 𝐵}.
-𝑠𝑛𝐴𝐵 = CRH(𝑠𝑘𝐴 , 𝑟𝐴𝐵).

-𝑐ℎ𝑐𝑚𝐴𝐵 ∈ CMTree.

-𝑣𝐴𝐵 = 𝑣𝐵 + 𝑣𝐴.

The detailed process proceeds as follows:

134 Computer Science & Information Technology (CS & IT)

CloseChannel. The CloseChannel operation is divided into two cases to discuss.

1) CloseChannelbyDiff. The algorithm describes the recipient generates a CloseChannel

transaction txCloseChannelbyDiff. The recipient utilizes the solution to difficult problem to

generate zero-knowledge proof, and posts txCloseChannelbyDiff to blockchain network

before the deadline of the channel. The transaction txCloseChannelbyDiff is composed of

the next variables.

• The latest off-chain transaction txOffchainTransfer.

• The difficult problem 𝑑𝑖𝑓𝑓𝐴𝐵.

• A zero-knowledge proof 𝜋Difficulty, proving the following equation: 𝑥 is a solution to 𝑑𝑖𝑓𝑓𝐴𝐵.

The detailed process proceeds as follows:

2) CloseChannelbyDdl. The algorithm describes the sender generates a CloseChannel
transaction txCloseChannelbyDdl. If the recipient does not close the channel in time, the

sender can do by proving to mixer contract that the deadline has passed. The transaction

txCloseChannelbyDdl is composed of the next variables.

• The latest off-chain transactiontxOffchainTransfer.

• The difficult problem 𝑑𝑑𝑙𝐴𝐵.

• A zero-knowledge proof 𝜋Deadline, proving the following equation: 𝑐𝑡 > 𝑑𝑑𝑙𝐴𝐵.

The detailed process proceeds as follows:

Computer Science & Information Technology (CS & IT) 135

Withdraw. The algorithm constructs a Withdraw transaction to redeem a note into equivalent

Ether. The transaction txWithdraw is composed of the following variables.

• The serial number𝑠𝑛𝐵 .

• The withdraw value𝑣𝐵.

• The Merkle root 𝑟𝑡.

• An account𝑟𝑒𝑝𝐴𝑑𝑑𝑟 to receive Ether.

•A zero-knowledge proof𝜋Withdraw, proving the following equations.

-𝑐𝑚𝐵 = Comm(𝑝𝑘𝐵, 𝑣𝐵, 𝑟𝐵).

-𝑠𝑛𝐵 = CRH(𝑠𝑘𝐵 , 𝑟𝐵).

-𝑐𝑚𝐵 ∈ CMTree.

The detailed process proceeds as follows:

VerifyTransaction. This algorithm checks by the mixer contract all transactions except

OffchainTransfer transactions. The contract verifies the uniqueness of serial numbers, the

correctness of note commitments and the validity of Merkle root. If all checks are satisfied, it will

perform corresponding operations: (i) add commitments into CMTree; (ii) append serial numbers

to SNSet; or (iii) transfer Ether to defined account. The detailed process proceeds as follows:

VerifyOffchainTransfer. This algorithm checks OffchainTransfer transactions by the recipient.

If passed, the transaction and note messages are stored. The detailed process proceeds as follows:

136 Computer Science & Information Technology (CS & IT)

4.3. Security of DMC

Following the security model defined in the Zerocash [17] and BlockMaze [7], we define two

secure properties of DMC: transaction unlinkability and overdraft safety. The formal security

definitions are provided in Appendix A.

Definition 1 (Security). A DMC scheme is secure if it satisfies transaction unlinkability and

overdraft safety as defined in the experiments in Figure 2. (Note, in DMCΠ,𝒜
TR−UL(λ), participant Of

denotes sender or recipient of transactions, addrOf denotes addresses of the adversary. In

DMCΠ,𝒜
OD−SF(λ), InOut is used to compute the income and outcome related to the account of 𝒜.)

1) Transaction unlinkability. The property, defined by the TR-UL experiment, means that no

probabilistic polynomial-time (PPT) adversary can recognize the transaction linkage

between the sender and recipient. The scheme Π is transaction unlinkable if

 Pr [DMCΠ,𝒜
TR−UL(λ) = 1] ≤ 𝑛𝑒𝑔𝑙(λ) (1)

where Pr [DMCΠ,𝒜
TR−UL(λ) = 1] represents the winning probability of 𝒜 in the TR-UL experiment.

2) Overdraft Safety. The property, formalized in the OD-SF experiment, shows that no PPT

adversary can spend more coins than what he deposits and receives from others. The scheme

Π is overdraft safe if

 Pr [DMCΠ,𝒜
OD−SF(λ) = 1] ≤ 𝑛𝑒𝑔𝑙(λ) (2)

where Pr [DMCΠ,𝒜
OD−SF(λ) = 1] means the winning probability of 𝒜 in the OD-SF experiment.

Theorem 1. The tuple Π = (Setup, Deposit, OpenChannel, OffchainTransfer, CloseChannel,

Withdraw, VerifyTransaction, VerifyOffchainTransfer) is a secure DMC scheme. (The proof is

provided in Appendix B.)

Figure 2. The transaction unlinkability and overdraft safety experiment for DMC.

Computer Science & Information Technology (CS & IT) 137

5. IMPLEMENT AND PERFORMANCE EVALUATION

In this section, we first instantiate cryptographic building blocks, and then implement our DMC

scheme as a specific mixer contract. At last, we conduct comprehensive experiments to evaluate

its performance. Our source code will be available at https://github.com/LS291730/DMC.

5.1. Cryptographic Building Blocks

As for collision-resistant cryptographic hash function (CRH), we choose MiMC [26] hash.

Compared to other hash functions (e.g. SHA-256 and Keccak), MiMC is friendly to arithmetic

circuits, creating lower number of constraints and operations. The commitment scheme is directly

instantiated using MiMC hash function, same as the difficult problem and the hash algorithm
used in the Merkle tree.

We use the eciespy, Elliptic Curve Integrated Encryption Scheme (ECIES) for secp256k1 in
Python, for the encryption scheme. In this scheme, transaction messages are directly encrypted

with Ethereum public key and decrypted with Ethereum private key.

We take Groth16 [27] as our instance of zk-SNARKs due to its efficiency in term of proof size
and verification time. Groth16 is an excellent zk-SNARK proving scheme which, compared with

other schemes, has a smaller proof size with fixed 256 bytes and a faster verification speed at

millisecond level. Note that in our implementation, the setup phase of zero-knowledge proof is
created by a trusted third party.

5.2. Implementation

We implement our DMC scheme based on zk-SNARK tools (e.g. circom [27], a low-level circuit

language and a compiler, and snarkjs [28], a JavaScript implementation of zk-SNARKs), and
Ethereum tools (e.g. Web3.py [29], a Python library for interacting with Ethereum, and Ganache,

a local Ethereum blockchain which generates some virtual accounts that we can use during

development.). For user algorithms, written by Python, they allow users to create transactions.
Users can send via Web3.py these transactions to the blockchain network, interacting with mixer

contract. In addition, we use cir com to construct arithmetic circuits; and later apply zero-

knowledge tool snarkjs to generate and validate zero-knowledge proofs. For mixer contract, it is

programmed by Solidity, compiled to EVM bytecode and later deployed on Ganache. The
functions in mixer, such as deposit, openChannel, closeChannel and withdraw, will verify

corresponding transactions and make corresponding operations. Note that DMC currently only

supports private transfer of Ether, but can later be expanded to support various tokens, such as
ERC-20 and ERC-721 tokens.

zk-SNARKs for DMC transactions. For these transactions in DMC (i.e., Deposit,
OpenChannel, OffchainTransfer, CloseChannel and Withdraw), we utilize zk-SNARKs to

construct zero-knowledge proofs according to their respective circuits. The common reference
string (CRS) related to each zero-knowledge proof is generated by a trusted third party and later

destroyed to guarantee security. And the generated key pairs for proof generation and verification

are public, available to users and mixer contract.

5.3. Performance Evaluation

We conduct experiments to evaluate the performance of the proposed mixing scheme. First of all,

we estimate the performance of zero-knowledge proofs. Then, we measure the gas cost consumed

https://github.com/LS291730/DMC

138 Computer Science & Information Technology (CS & IT)

by transactions involved in our scheme and analyse the main factors for the gas cost. At last, we
analyse the decrease in transaction cost and latency. Note that the following experiments are

executed 10 times and we take the average value.

We now consider the performance of zero-knowledge proofs in terms of setup time, key pair size
and proof generation/verification time. These are summarized in table 1. Note that the generator

time refers to the time executing both Setupzkp and KeyGenzkp algorithms for each of zero-

knowledge proofs. For each proof, the generator time depends on the complexity of circuit (e.g.,

circuit 𝒞Deposit contains 1 MiMC gadget while circuit 𝒞OpenChannel contains 6 MiMC gasgets

and 2 Merkle tree gadgets), the same as the generation time. Furthermore, the generator time is

linearly dependent on the size of the proving key. Instead, the size of verification key and the

time of proof verification are maintained stable, irrelevant to the circuit's complexity.

Table 1. The performance of zero-knowledge proofs.

ZKP Generator

time

Proving

key size

Verification

key size

Proof

generation time

Proof

verification time

Deposit 49.4s 1.0MB 640B 0.77s 0.376s

OpenChannel 6m51s 6.2MB 832B 1.53s 0.368s

OffchainTransfer 3m50s 4.1MB 768B 1.33s 0.371s

Withdraw 52.3s 1.8MB 704B 0.91s 0.360s

The cost to deploy the DMC mixing contract is 2,294,567 gas. Table 2 shows the gas cost

consumed by these transactions sent to the mixer contract. For Deposit transactions, it consumes

the first sender 1,090,661 gas to process the first transaction, but 610,653 (given in the table) for
the other transactions. The extra gas is costed to set storage in the EVM. A majority of the gas

cost lies in two chief operations: the verification of zero-knowledge proofs and the update of the

Merkle tree CMTree, both of which cost approximately 200,000 gas. The numbers of verification
and update operations involved in each transaction are given in Table 3. As seen from the table,

the CloseChannel transaction costs the most gas while the Withdraw transaction costs the least

because the former has two verification and update operations respectively while the latter needs

to verify zero-knowledge proof only once.

Table 2. The gas cost of transactions for interacting with mixer contract.

Transaction Gas cost #VerifyProof #UpdateTree

txDeposit 610,653 1 1

txOpenChannel 919,108 1 2

txCloseChannelbyDiff 1,118,862 2 2

txCloseChannelbyDdl 1,126,453 2 2

txWithdraw 288,421 1 0

Compared with related work, the gas cost of related decentralized mixing schemes is given in

Table 3 (Note that k and 𝑗 denote the number of participants in the ring signature or shuffle and

the number of malicious shuffles respectively). In the first two schemes, one deposit transaction
corresponds to one withdrawal transaction without an extra transfer operation. When

withdrawing from mixer contract, Möbius and Miximus utilize verifiable ring signature and zero-

knowledge proof respectively to create the withdrawal transaction. So, the cost of withdrawal

operation in Möbius grows linearly with the number of participants in ring signature, and that in

Miximus is relatively high for proof verification. In MixEth, before withdrawing, several shuffle

operations are required to perform to break the transaction relationship, and then recipients need

to check the correctness of the preceding shuffles. The latter two schemes use existing deposits in

Computer Science & Information Technology (CS & IT) 139

the mixer to transfer to recipients. Zether costs more gas for applying encryption scheme and Σ-
Bullets to transfer. While in our scheme DMC, because the sender sends transaction messages

directly to the recipient through anonymous network, there is no need to interact with Ethereum

network except one transaction to open a channel (919,108 gas) and another to close the channel

(1,118,862 gas).

Table 3. Comparison between gas costs of different decentralized mixing schemes.

Mixer Deposit Withdraw Transfer Total

Möbius [9] 76,123 335,714𝑘 - 1,418,979

Miximus [10] 732,815 1,903,305 - 2,636,120

MixEth [12] 99,254 113,265 366,216+10,000k+227,563j 1,528,987

Zether [8] 260,000 384,000 7,188,000 7,832,000

DMC 610,653 288,421 0 3,547,697/n

For a complete transaction between two parties, the total transaction cost includes depositing,

transferring (if exists) and withdrawing operations. Here, we set both the number of participants

in ring signature/shuffle and the number of malicious shuffles to 4, i.e., 𝑘 = 4 and 𝑗 = 4. In our
scheme, we suppose that the sender and recipient make n off-chain transactions in total via the

channel, i.e., the number of transactions in batch is 𝑛. Since there is no need for consensus for

these transactions, the total cost of n transactions only covers depositing, opening and closing of
channels and withdrawing operations. By comparison with other schemes, the average cost of a

transaction is 3,547,697/𝑛 , which is approximately 1/𝑛 of others. For the same reason, the

transaction latency is also about 1/𝑛 of other schemes. Because these 𝑛 transactions are free from

the effect of the underlying block generation mechanism and network congestion. On the other
hand, the communication delay of anonymous network, compared with Ethereum network, is

negligible.

Overall, the experimental results show that our proposed scheme is feasible on Ethereum. From

theoretical and experimental analysis of DMC, we obtain that the average transaction cost and

transaction latency are both about 1/𝑛 of other mixing schemes.

6. RELATED WORK

Currently, transaction privacy-preserving schemes mainly include coin mixer, ring signature,

zero-knowledge proof and trusted computation, etc. However, in this paper, we only focus the
mixing schemes, more specifically, the decentralized ones. First, based on the balance model, the

decentralized mixing schemes can be divided into account-based model [8] and UTXO-based

model [11]. On the other hand, these schemes can also be classified to any mixing amount [8],

[11] and fixed mixing amount [9], [12]. Some decentralized mixing schemes in the literature are

briefly introduced as follows.

Mobius [9] presents a decentralized mixer, which only supports for transactions of fixed

denominations. The scheme just involves deposit and withdrawal operations. To deposit, the

sender derives a new stealth address to hide the recipient. When withdrawing, the recipient
generates verifiable ring signature to prove his ownership of coins. The ring signature obscures

recipients, however the gas cost consumed by signature verification increases linearly with the

size of recipient set.

Zether [8] proposes an account-based coin mixer, i.e., users' deposits are placed in accounts in the

form of ciphertext. When transferring, it utilizes homomorphic encryption to hide transaction

140 Computer Science & Information Technology (CS & IT)

amount, uses an anonymous account set to hide the sender and recipient, and exploits zero-
knowledge proof to ensure the validity of transactions. Though there is no need for trusted setup,

the overhead scales linearly with the size of the anonymous set.

MixEth [12], a trustless coin mixer, does not rely on a trusted setup. It uses shuffling method to
break the relationship of two parties coin mixing, achieving strong notions of anonymity.

Shuffling and challenging rounds are made in turns. Computing the shuffle is done off-chain,

verifying the correctness of the new shuffling on-chain.

7. CONCLUSIONS

The decentralized mixing scheme suffers from high transaction cost for complex operations and

expensive computing resources and long transaction latency for block generation mechanism and
network congestion. In this paper, we adopt the idea of batch accounting to improve efficiency,

reducing the transaction cost and latency issues. As the technical support behind batch

accounting, we introduce payment channel technology into the mixing scheme and propose a
decentralized mixer with channel called DMC. DMC works well in combination with the

advantages of decentralized mixer and payment channel, decreasing the transaction cost and

latency, while breaking the transaction relationship and hiding the transaction value. By the
created channel, the transactions between two parties are transmitted through anonymous

network. Since these off-chain transactions avoid network consensus, we achieve the decrease in

transaction cost and latency.

Future scope of our proposed scheme is (i) There is need of utilizing secure multi-party

computation (MPC) to avoid the trusted setup of zero-knowledge proof. (ii) The channel between

the two sides needs to be expanded from one-way to two-way. (iii) The mixer with channel
scheme will be likely to scale into other blockchain system, such as Bitcoin. (iv) The privacy

protection method, not just the mixing scheme, can be combined with the two-layer scaling

solutions to improve performance.

ACKNOWLEDGEMENTS

This work is partly supported by the National Key Research and Development Program of China (No.

2020YFB1005900), the Research Fund of Guangxi Key Laboratory of Trusted Software (No. kx201906),
and the Research Fund of Guangxi Key Lab of Multi-source Information Mining \& Security (No.

MIMS20-07).

REFERENCES

[1] Béres, F., Seres, I. A., Benczúr, A. A., &Quintyne-Collins, M. (2020). “Blockchain is watching you:
Profiling and deanonymizing ethereum users”. arXiv preprint arXiv:2005.14051.

[2] Klusman, R., &Dijkhuizen, T. (2018). “Deanonymisation in ethereum using existing methods for

bitcoin”.

[3] Victor, F. (2020). “Address clustering heuristics for Ethereum”. In International Conference on

Financial Cryptography and Data Security, pp. 617-633.

[4] Payette, J., Schwager, S., & Murphy, J. (2017). “Characterizing the ethereum address space”.

[5] Chan, W., & Olmsted, A. (2017). “Ethereum transaction graph analysis”. In 2017 12th international

conference for internet technology and secured transactions, pp. 498-500.

[6] Ma, S., Deng, Y., He, D., Zhang, J., &Xie, X. (2020). “An efficient NIZK scheme for privacy-

preserving transactions over account-model blockchain”. IEEE Transactions on Dependable and

Secure Computing, Vol. 18, No. 2,pp. 641-651.

Computer Science & Information Technology (CS & IT) 141

[7] Guan, Z., Wan, Z., Yang, Y., Zhou, Y., & Huang, B. (2020). “Blockmaze: An efficient privacy-

preserving account-model blockchain based on zk-SNARKs”. IEEE Transactions on Dependable and

Secure Computing.

[8] Bünz, B., Agrawal, S., Zamani, M., &Boneh, D. (2020). “Zether: Towards privacy in a smart contract

world”. In International Conference on Financial Cryptography and Data Security, pp. 423-443.
[9] Meiklejohn, S., & Mercer, R. (2018). “Möbius: Trustless Tumbling for Transaction Privacy.

Proceedings on Privacy Enhancing Technologies”, pp. 105-121.

[10] Barry Whitehat. (2018). “Miximus: zksnark-based trustless mixing for Ethereum”.

https://github.com/barryWhiteHat/miximus.

[11] Rondelet, A., & Zajac, M. (2019). “Zeth: On integrating zerocash on ethereum”. arXiv preprint

arXiv:1904.00905.

[12] Seres, I. A., Nagy, D. A., Buckland, C., &Burcsi, P. (2019). “Mixeth: efficient, trustless coin mixing

service for ethereum”. In International Conference on Blockchain Economics, Security and

Protocols.

[13] Zachary J. Williamson. (2018). The AZTEC protocol. Available at: https://github.com/Aztec

Protocol/AZTECblob/master/AZTEC.pdf.

[14] Nightfall implementation. Available at: https://github.com/EYBlockchain/nightfall.
[15] Tornado cash implementation. Available at: https://github.com/tornadocash/tornado-core.

[16] Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H., &Capkun, S. (2016). “On the

security and performance of proof of work blockchains”. In Proceedings of the 2016 ACM SIGSAC

conference on computer and communications security. pp. 3-16.

[17] Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., &Virza, M. (2014).

“Zerocash: Decentralized anonymous payments from bitcoin”. In 2014 IEEE Symposium on Security

and Privacy. pp. 459-474.

[18] Gavin Wood. (2014). “Ethereum: A Secure Decentralised Generalised Transaction Ledger”.

Ethereum project yellow paper.

[19] Tremback, J., & Hess, Z. (2015). “Universal payment channels”.

[20] Dziembowski, S., Faust, S., &Hostáková, K. (2018). “General state channel networks”. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. pp.

949-966.

[21] Poon, J., &Dryja, T. (2016). “The bitcoin lightning network: Scalable off-chain instant payments”.

Available at: https:// lightning.network/lightning-network-paper.pdf.

[22] Raiden Network. Available at: https://raiden.network.

[23] Bellare, M., &Rogaway, P. (2005). “Introduction to modern cryptography”. UcsdCse, 207, 207.

[24] Elliptic Curve Integrated Encryption Scheme for secp256k1 in Python. Available at: https://gith

ubcom/ecies/py.

[25] Dingledine, R., Mathewson, N., &Syverson, P. (2004). “Tor: The second-generation onion router”.

Naval Research Lab Washington DC.

[26] Albrecht, M., Grassi, L., Rechberger, C., Roy, A., &Tiessen, T. (2016). “MiMC: Efficient encryption

and cryptographic hashing with minimal multiplicative complexity”. In International Conference on
the Theory and Application of Cryptology and Information Security. pp. 191-219.

[27] Groth, J. (2016). “On the size of pairing-based non-interactive arguments”. In Annual international

conference on the theory and applications of cryptographic techniques. pp. 305-326.

[28] Circom. Available at: https://docs.circom.io/.

[29] Snarkjs. Available at: https://github.com/iden3/snarkjs.

[30] Web3.py. Available at: https://web3py.readthedocs.io.

APPENDIX A: DEFINITION OF SECURITY

A DMC scheme Π = (Setup, Deposit, OpenChannel, OffchainTransfer, CloseChannel, Withdraw,
VerifyTransaction) is secure if it satisfies transaction unlinkability and overdraft safety. For

security definitions, we design two experiments which are employed based on a stateful DMC

oracle 𝒪DMC . The 𝒪DMC provides queries for adversary 𝒜 , these queries being interfaces for

executing the algorithms defined in Π. The oracle is initialized by public parameters pp and stores

a transaction set TX, a set NCS including a list of a tuple (𝑛𝑜𝑡𝑒, 𝑐𝑚, 𝑠𝑛) and a set of accounts

Acc. Below, we describe these queries made to the oracle 𝒪DMC.

https://github/
https://github.com/Aztec%20Protocol/AZTECblob/master/AZTEC.pdf
https://github.com/Aztec%20Protocol/AZTECblob/master/AZTEC.pdf
https://github.com/EYBlockchain/nightfall
https://github.com/tornadocash/tornado-core
https://raiden.network/
https://docs.circom.io/
https://github.com/iden3/snarkjs
https://web3py.readthedocs.io/

142 Computer Science & Information Technology (CS & IT)

 𝒬= (CreateAccount). The challenger 𝒞 : (i) computes a key pair (𝑠𝑘, 𝑝𝑘) and an address

𝑎𝑑𝑑𝑟; (ii) adds 𝑎𝑑𝑑𝑟 into Acc; (iii) outputs (𝑎𝑑𝑑𝑟, 𝑝𝑘).

 𝒬= (Deposit, 𝑣 , 𝑝𝑘𝐴). The challenger 𝒞 : (i) computes a tuple (𝑛𝑜𝑡𝑒, 𝑐𝑚, 𝑠𝑛) and a

transaction txDeposit by calling Deposit algorithm; (ii) adds (𝑛𝑜𝑡𝑒, 𝑐𝑚, 𝑠𝑛) to NCS and

txDeposit to TX.

 𝒬 = (OpenChannel, 𝑛𝑜𝑡𝑒1, 𝑛𝑜𝑡𝑒2, 𝑣𝐴𝐵, 𝑝𝑘𝐵 , 𝑑𝑖𝑓𝑓𝐴𝐵, 𝑑𝑑𝑙𝐴𝐵). The challenger 𝒞 : (i)

computes two tuples (𝑐ℎ𝑛𝑡𝐴𝐵 , 𝑐ℎ𝑐𝑚𝐴𝐵, 𝑐ℎ𝑠𝑛𝐴𝐵) and (𝑛𝑜𝑡𝑒𝑟, 𝑐𝑚𝑟, 𝑠𝑛𝑟) and a transaction

txOpenChannel by calling OpenChannel algorithm; (ii) adds these two tuples to NCS and

txOpenChannel to TX.

 𝒬= (CloseChannel, txOffchainTransfer , 𝑥). The challenger 𝒞: (i) computes txCloseChannel

by calling CloseChannelbyDiff algorithm; (ii) adds txCloseChannel to TX. Note that we

only consider the case that the recipient actively closes the channel.

 𝒬 = (Withdraw, 𝑣, 𝑎𝑑𝑑𝑟). The challenger 𝒞 : (i) computes txWithdraw by calling

Withdraw algorithm; (ii) adds txWithdraw to TX.

 𝒬= (Insert, tx). The challenger 𝒞 verifies the output of VerifyTransaction algorithm: if

the output is 1, adds the tx to TX; otherwise, it aborts.

A.1 Transaction Unlinkability

Let 𝒯 be the set of transaction txOffchainTransfer attached with CloseChannel queries. We define

the transaction unlinkability experiment DMCΠ,𝒜
TR−UL(λ)as follows.

1) The public parameters 𝑝𝑝 = Setup(1𝜆) are computed and provided to 𝒜.

2) Whenever 𝒜 queries 𝒪DMC, answer this query with transaction set TX at each step.

3) Continue answering queries until 𝒜 sends a pair of transactions (tx, tx′) with the requirements:

(i) (tx, tx′ ∈ 𝒯); (ii) tx ≠ tx′; (iii) the senders and recipients of tx, tx′ are not 𝒜.

4) The experiment outputs 1 if the senders of (tx, tx′) are same and the recipients of (tx, tx′) are

also same. Otherwise, it outputs 0.

Definition 2 (TR-UL Security). A DMC scheme Π = (Setup, Deposit, OpenChannel,
OffchainTransfer, CloseChannel, Withdraw, VerifyTransaction, VerifyOffchainTransfer) is TR-UL

secure, if for PPT adversary 𝒜, there is a negligible function 𝑛𝑒𝑔𝑙 such thatPr [DMCΠ,𝒜
TR−UL(λ) =

1] ≤ 𝑛𝑒𝑔𝑙(λ).

A.2 Overdraft Safety

We design the overdraft safety experiment, which means PPT adversary 𝒜 tries to attack a given

DMC scheme. Firstly, we define five variables for the security model.

 𝑣Deposit, the total value deposited by 𝒜. To compute 𝑣Deposit, the challenger 𝒞 finds out all

Deposit transactions recorded in TX via Deposit queries and sums up these values which

were transferred from 𝒜.

 𝑣Acc → 𝒜, the total value received by 𝒜 from accounts in Acc. To compute 𝑣Acc → 𝒜, the

challenger 𝒞 looks up all txOffchainTransfer in CloseChannel transactions recorded in TX via

CloseChannel queries and adds the values whose recipient are 𝒜.

Computer Science & Information Technology (CS & IT) 143

 𝑣Withdraw, the total value redeemed by 𝒜. To compute 𝑣Withdraw, the challenger 𝒞 finds

out all Withdraw transactions recorded in TX via Withdraw queries and sums up these

values which were transferred to 𝒜.

 𝑣𝒜 → Acc , To compute 𝑣𝒜 → Acc , the challenger 𝒞 looks up all txOffchainTransfer in

CloseChannel transactions recorded in TX via CloseChannel queries and adds the values

whose sender are 𝒜.

 𝑣unspent , the spendable amount in 𝑐𝑚 and 𝑐ℎ𝑐𝑚 . The challenger 𝒞 can check whether

corresponding 𝑛𝑜𝑡𝑒/𝑐ℎ𝑛𝑡 is spendable as follows. For 𝑐𝑚, 𝒞 checks if a Withdraw query

which redeems 𝑛𝑜𝑡𝑒 generates a valid transaction txWithdraw. For 𝑐ℎ𝑐𝑚, 𝒞 first uses 𝑐ℎ𝑛𝑡

to create an off-chain transaction txOffchainTransfer via a OffchainTransfer query, and then

checks if a CloseChannel query yields a valid transaction txCloseChannel , which closes the

channel 𝑐ℎ𝑛𝑡 using txOffchainTransfer.

For an honest account 𝑢, 𝑣Withdraw + 𝑣𝒜→Acc + 𝑣unspent > 𝑣Deposit + 𝑣Acc→𝒜.

Formally, we define the overdraft safety experiment DMCΠ,𝒜
OD−SF(λ) as follows.

1) The public parameters 𝑝𝑝 = Setup (1𝜆) are computed and provided to 𝒜.

2) Whenever 𝒜 queries 𝒪DMC, answer this query with transaction set TX at each step.

3) Continue answering queries until 𝒜 sends a set NCS.

4) Compute the five variables mentioned above.

5) The experiment outputs 1 if 𝑣Withdraw + 𝑣𝒜→Acc + 𝑣unspent > 𝑣Deposit + 𝑣Acc→𝒜 .

Otherwise, it outputs 0.

Definition 2 (OD-SF Security). A DMC scheme Π = (Setup, Deposit, OpenChannel,
OffchainTransfer, CloseChannel, Withdraw,VerifyTransaction, VerifyOffchainTransfer) is OD-
SFsecure, if for PPT adversary 𝒜, there is a negligible function 𝑛𝑒𝑔𝑙 such that

Pr [DMCΠ,𝒜
OD−SF(λ) = 1] ≤ 𝑛𝑒𝑔𝑙(λ).

APPENDIX B: PROOF OF SECURITY

A DMC scheme Π = (Setup, Deposit, OpenChannel, OffchainTransfer, CloseChannel, Withdraw,
VerifyTransaction, VerifyOffchainTransfer) is secure if it satisfies transaction unlinkability and

overdraft safety.

B.1 Proof of Transaction Unlinkability

Let 𝒯 be the set of transaction txOffchainTransfer attached with CloseChannel queries. 𝒜 wins the

TR-UL experiment when it outputs a pair of transactions (tx, tx′) if the senders of (tx, tx′) are same

and the recipients of (tx, tx′) are also same. Suppose 𝒜 outputs a pair of transactions

txCloseChannel , txCloseChannel
′ . The txOffchainTransfer in txCloseChannel satisfies the following

equations:

1) txOffchainTransfer = (𝑐ℎ𝑠𝑛𝐴𝐵, 𝑐𝑚𝐵, 𝑐𝑚𝐴, 𝑟𝑡, 𝜋OffchainTransfer).

2) 𝑐𝑚𝐵 = Comm(𝑝𝑘𝐵, 𝑣𝐵, 𝑟𝐵).

3) 𝑐𝑚𝐴 = Comm(𝑝𝑘𝐴, 𝑣𝐴, 𝑟𝐴).

and the txOffchainTransfer
′ in txCloseChannel

′ satisfies the following equations:

144 Computer Science & Information Technology (CS & IT)

1) 𝑡𝑥OffchainTransfer
′ = (𝑐ℎ𝑠𝑛𝐴𝐵

′ , 𝑐𝑚𝐵
′ , 𝑐𝑚𝐴

′ , 𝑟𝑡′, 𝜋OffchainTransfer
′).

2) 𝑐𝑚𝐵
′ =Comm(𝑝𝑘𝐵

′ , 𝑣𝐵
′ , 𝑟𝐵

′).

3) 𝑐𝑚𝐴
′ =Comm(𝑝𝑘𝐴

′ , 𝑣𝐴
′ , 𝑟𝐴

′).

𝒜 wins the TR-UL experiment if the senders and recipients contained in

(txOffchainTransfer , txOffchainTransfer
′ are the same, i.e., 𝑝𝑘𝐴 = 𝑝𝑘𝐴

′ and 𝑝𝑘𝐵 = 𝑝𝑘𝐵
′ . There are

two ways for 𝒜 to distinguish whether 𝑝𝑘𝑖 = 𝑝𝑘𝑖
′, 𝑖 ∈ {𝐴, 𝐵}: (i) distinguish public keys from

commitments; (ii) distinguish public keys from the zero-knowledge proofs.

For condition (i), 𝒜 must distinguish 𝑝𝑘𝑖 = 𝑝𝑘𝑖
′ based on different commitments (𝑐𝑚𝑖 , 𝑐𝑚𝑖

′), 𝑖 ∈
{𝐴, 𝐵} without knowing other secret values, which means that 𝒜 ought to break the hiding

property of the commitment scheme. For condition (ii), 𝒜 must distinguish 𝑝𝑘𝑖 = 𝑝𝑘𝑖
′, 𝑖 ∈ {𝐴, 𝐵}

based on different zero-knowledge proofs 𝜋OffchainTransfer, 𝜋OffchainTransfer
′ , which means that

𝒜 ought to break the proof of knowledge property of the zk-SNARKs. However, due to the

security of commitment scheme and zk-SNARks, 𝒜 cannot distinguish the two pairs of public

keys.

B.2 Proof of Overdraft Safety

We modify the overdraft safety experiment without affecting the view of 𝒜 . First, for each

txOffchainTransfer inside CloseChannel transaction txCloseChannel in TX, 𝒞 computes a witness

�⃗⃗� = (𝑐ℎ𝑛𝑡𝐴𝐵, 𝑛𝑜𝑡𝑒𝐵, 𝑛𝑜𝑡𝑒𝐴, 𝑠𝑘𝐴 , 𝑝𝑎𝑡ℎ𝐴𝐵) for the instance 𝑥 = (𝑐ℎ𝑠𝑛𝐴𝐵, 𝑐𝑚𝐵, 𝑐𝑚𝐴, 𝑟𝑡). Then, 𝒞

constructs an augmented transaction set (TX, W), a list of matched pairs (txOffchainTransfer , �⃗⃗�).

Definition 3 (Overdraft safe transaction set). An augmented transaction set (TX, W) is overdraft
safe if the following holds.

1) Each (txOffchainTransfer , �⃗⃗�) in (TX, W) contains openings (e.g., 𝑐ℎ𝑠𝑛𝐴𝐵) of a channel note

commitment 𝑐ℎ𝑐𝑚𝐴𝐵 , which is the output of a transaction txOpenChannel that precedes

txOffchainTransfer in TX.

2) No two (txOffchainTransfer , �⃗⃗�) and (𝑡𝑥OffchainTransfer
′ , �⃗⃗� ′) in (TX, W) contain openings of the

same note commitment.

3) Each (txOffchainTransfer , �⃗⃗�) in (TX, W) contains openings of 𝑐ℎ𝑐𝑚𝐴𝐵, 𝑐𝑚𝐵, 𝑐𝑚𝐴 to values

𝑣𝐴𝐵, 𝑣𝐵, 𝑣𝐴 respectively, satisfying 𝑣𝐴𝐵 = 𝑣𝐵, +𝑣𝐴.

4) For each (txOffchainTransfer , �⃗⃗�) in (TX, W), if 𝑐ℎ𝑐𝑚𝐴𝐵 is the output of a transaction

txOpenChannel in TX, then its witness 𝜔 contains an opening of 𝑐ℎ𝑐𝑚𝐴𝐵 to a value 𝑣 that is equal

to 𝑣𝐴𝐵.

5) For each (txOffchainTransfer , �⃗⃗�) in (TX, W), where txOpenChannel is inserted by 𝒜, it holds

that if 𝑐ℎ𝑐𝑚𝐴𝐵 is the output of an earlier transaction txOpenChannel, then the public value 𝑣 in

txOpenChannel is equal to 𝑐ℎ𝑐𝑚𝐴𝐵.

One can prove that (TX, W) is overdraft safe if the equation holds: 𝑣Withdraw + 𝑣𝒜→Acc +
𝑣unspent > 𝑣Deposit + 𝑣Acc→𝒜. For each case mentioned above, we prove that five cases are in a

negligible probability by way of contradiction. Note that we denote by Pr[𝒜(𝐶𝑜𝑛𝑘
̅̅ ̅̅ ̅̅ ̅) = 1] a non-

negligible probability that 𝒜 wins but violates condition 𝑘, 𝑘 ∈ {1,2,3,4}.

Computer Science & Information Technology (CS & IT) 145

𝓐 violates Condition 1. During construction of 𝒪DMC, every (txOffchainTransfer , �⃗⃗�) in (TX, W)

where txOffchainTransfer is not inserted by 𝒜 satisfies condition 1; thus, Pr[𝒜(𝐶𝑜𝑛1
̅̅ ̅̅ ̅̅ ̅) = 1] is a

probability that 𝒜 inserts txOffchainTransfer to construct (txOffchainTransfer , �⃗⃗�) ∈ (TX, W) where

𝑐ℎ𝑐𝑚𝐴𝐵 used in txOffchainTransfer is not the output note commitment of any previous transactions

before txOffchainTransfer in TX.

Note that the validity of txOffchainTransfer implies that the witness 𝜔 contains a valid path 𝑝𝑎𝑡ℎ𝐴𝐵

for a Merkle tree constructed by commitments in earlier transactions. However, a contradiction

can be found: if 𝑐ℎ𝑐𝑚𝐴𝐵 does not previously exist in TX, then 𝑝𝑎𝑡ℎ𝐴𝐵 is not a valid path but with

a valid root 𝑟𝑡. Therefore, this violates the property of collision resistance of CRH.

𝓐 violates Condition 2. When condition 2 is violated, TX contains two

transactions txOffchainTransfer and 𝑡𝑥OffchainTransfer
′ that spend the same note commitment

𝑐ℎ𝑐𝑚𝐴𝐵, and yield two different serial numbers 𝑐ℎ𝑠𝑛𝐴𝐵 and 𝑐ℎ𝑠𝑛𝐴𝐵
′ . Obviously, Pr[𝒜(𝐶𝑜𝑛2

̅̅ ̅̅ ̅̅ ̅) =
1] is a probability that 𝒜 inserts a pair of transactions where 𝑐ℎ𝑐𝑚𝐴𝐵 = 𝑐ℎ𝑐𝑚𝐴𝐵

′ and 𝑐ℎ𝑠𝑛𝐴𝐵 ≠
𝑐ℎ𝑠𝑛𝐴𝐵

′ . However, if the two transactions spend the same 𝑐ℎ𝑐𝑚𝐴𝐵 but create different serial

numbers, then corresponding witnesses 𝜔 and 𝜔′ include different opening of 𝑐ℎ𝑐𝑚𝐴𝐵.Therefore,

this contradicts the binding property of the commitment scheme.

𝓐 violates Condition 3. Pr[𝒜(𝐶𝑜𝑛3
̅̅ ̅̅ ̅̅ ̅) = 1] is a probability that the equation 𝑣𝐴𝐵 ≠ 𝑣𝐵 + 𝑣𝐴

holds. When violating condition 3, the equation 𝑣𝐴𝐵 = 𝑣𝐵 + 𝑣𝐴 does not hold, so violating the

soundness of zk-SNARKs during the construction of zero-knowledge proof 𝜋OffchainTransfer.

𝓐 violates Condition 4. Each (txOffchainTransfer , �⃗⃗�) in (TX, W) contains values (i.e., 𝑣𝐴𝐵) of

𝑐ℎ𝑐𝑚𝐴𝐵, and 𝑐ℎ𝑐𝑚𝐴𝐵 is also the output commitment to values (including 𝑣𝐴𝐵
′) in a OpenChannel

transaction txOpenChannel. Obviously, Pr[𝒜(𝐶𝑜𝑛4
̅̅ ̅̅ ̅̅ ̅) = 1] is a probability that the euqation 𝑣𝐴𝐵 ≠

𝑣𝐴𝐵
′ holds. Thus, this contradicts the binding property of commitment scheme.

AUTHORS

Su Liu, female, master's degree. Her main research fields are blockchain technology,

privacy protection, etc

Jian Wang, male, doctor, professor, doctoral supervisor. His main research fields are key

management, cryptographic protocol, privacy protection, etc.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution (CC
BY) license.

http://airccse.org/

	Abstract
	Keywords
	Ethereum, transaction privacy, decentralized coin mixer, payment channel, zero-knowledge proof.

