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ABSTRACT 
 

Ethereum is a public blockchain platform with smart contract. However, it has transaction 

privacy issues due to the openness of the underlying ledger. Decentralized mixing schemes are 

presented to hide transaction relationship and transferred amount, but suffer from high 

transaction cost and long transaction latency. To overcome the two challenges, we propose the 

idea of batch accounting, adopting batch processing at the time of accounting. For further 

realization, we introduce payment channel technology into decentralized mixer. Since 

intermediate transactions between two parties do not need network consensus, our scheme can 

reduce both transaction cost and transaction latency. Moreover, we provide informal definitions 

and proofs of our scheme's security. Finally, our scheme is implemented based on zk-SNARKs 
and Ganache, and experimental results show that the higher number of transactions in batch, 

the better our scheme performs. 
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1. INTRODUCTION 
 
During the past few years, the blockchain technology has drawn tremendous interests from IT 

industries (e.g. Google, Alibaba and Amazon) to financial institutions (e.g., Goldman Sachs and 

JP Morgan). Currently, main application areas of blockchain involve finance, payment, data 

services and so on. Especially in the financial industry, transaction is a significant component, 
representing the main financial activity of enterprises and individuals. The importance of data 

places great demands on security and privacy of blockchain. 

 
Ethereum is a distributed append-only public transaction ledger maintained by consensus 

protocols. However, it suffers from transaction privacy leakage [1], [2] due to the decentralized 

nature of blockchain. Though the generated account addresses are pseudonymous, but it is 

possible to link these addresses with real world identities by deanonymization techniques, such as 
address clustering [3], [4] and transaction graph analysis [5]. Furthermore, transaction 

relationship and transferred amount between users can be directly obtained via analysing the 

underlying public ledger, and moreover, attackers can infer users’ income levels, spending habits, 
etc. Therefore, the openness and sensitiveness of transaction information force Ethereum 

community to design solutions to guarantee transaction privacy. 

 

http://airccse.org/cscp.html
http://airccse.org/csit/V11N14.html
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Recently, some schemes and projects [6]-[9], [11], [13]-[15] have been proposed, attempting to 
solve the privacy problem while ensuring the verifiability of transactions and the reliability of the 

ledger. Among them, the main method is coin mixer [8], [9], [11], [13]-[15], where senders 

deposit some coins into a centralized third party or a smart contract, then the third party or 

contract transfers the equivalent coins to receivers when they withdraw from the mixer. These 
mixing mechanisms can be categorized in two classes: (i) centralized mixer, simple but lack of 

security and privacy; (ii) decentralized mixer, secure but heavy computation. In the following, we 

will focus on the problem of decentralized mixer. 
 

In the decentralized mixer with any mixing amount, compared with fixed mixing amount, there 

are three main operations: (i) deposit, the sender deposits some coins into mixer contract in the 
form of note; (ii) transfer, the sender exploits created notes inside the contract to transfer to the 

recipient; (iii) withdraw, the recipient redeems the corresponding coins from the contract. 

Notably, the verification of transactions generated by the above three operations will consume 

hundreds of thousands gas for heavy cryptographic computation. Moreover, the high gas price 
(about $24/106 gas at the time of writing) due to expensive computing resources will impose a 

further cost burden. On the other hand, the transaction latency due to the underlying mechanism 

(block time interval of about 15 seconds and transaction confirmation time of about 10 minutes 
[16]) and network congestion is also intolerable. In all, the costly transaction fee (equal to the 

multiplication of gas used and gas price) and the long transaction latency make it challenge to put 

the decentralized mixing scheme into practice. 
 

To address the aforementioned issues, we introduce the concept of batch accounting. It means 

that not every time a transaction occurs, it is submitted to the blockchain, but when several 

transactions are completed, the final transaction result is recorded on the blockchain. Inspired by 
payment channel technique, whose key idea is to only record the final transaction result on the 

blockchain, ignoring intermediate transaction process between two parties, we employ payment 

channel as the technical support behind batch accounting, proposing a decentralized mixer with 
channel (DMC). The original transfer operation in the above mixing scheme is completed 

through payment channel, i.e., off-chain transmission of transaction messages. More specifically, 

when need to transact, the sender utilizes notes in mixer contract to create a channel note, served 

as a payment channel. The deposit in the channel is equal to the denomination of the channel 
note. Then via the channel, the sender creates new transactions (including the total amount that 

the sender needs to transfer to the recipient so far) and sends them directly to the recipient 

through anonymous network. After receiving a transaction, the recipient verifies and decides 
whether to accept it. Essentially, the transaction between two parties is the redistribution of the 

deposit in the channel. When not need the channel again, the recipient closes the channel by 

posting the latest received transaction to blockchain. 
 

Since intermediate transactions between two parties do not go through the Ethereum network, no 

decentralized consensus is required. Hence, our scheme can achieve the reduction in transaction 

cost and latency. Specifically, due to being free from the influence of underlying mechanism and 
network congestion, the latency of off-chain transactions can be decreased to the communication 

delay of anonymous network. On the other hand, although the recipient still needs to verify the 

correctness of off-chain transactions, the verification is performed locally rather than on the 
Ethereum virtual machine (EVM), so our scheme gets rid of the expensive computing resources 

on Ethereum and achieves very low transaction cost. Compared with original transactions, the 

cost and latency of off-chain transactions are both negligible. 
 

Contributions. In summary, the main contributions of this paper are as follows. 
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(1) We propose the idea of batch accounting and construct a decentralized mixer with channel 
called DMC, which reduces transaction cost and latency while hides the transaction 

relationship and transferred amount. Our scheme is suitable for frequent transactions 

between senders and recipients. Because there is no need for network consensus for most 

transactions of two parties, the reduction in cost and latency is achieved. 
 

(2) We implement DMC based on zk-SNARKs and Ganache, and conduct a number of 

experiments to evaluate its performances. The results show that our scheme is feasible. 
Combined with theoretical and experimental analysis of DMC, we can get the average 

transaction cost and transaction latency are both approximately 1/ 𝑛  of other mixing 

schemes, 𝑛 denoting the unfixed number of transactions in batch. 

 
Paper Organization. The rest of the paper is organized as follows. Section 2 provides some 

background on Ethereum and payment channel, and explains the cryptographic primitives. 

Section 3 describes the decentralized mixing scheme. Then, we construct our scheme DMC based 
on the above decentralized scheme in Section 4. Furthermore, Section 5 details the 

implementation of DMC, evaluates its performance, and draws comparisons with other schemes. 

The related work is reviewed in Section 6. Finally, we conclude this paper in Section 7. 
 

2. PRELIMINARIES 
 

In this section, we outline the related background of Ethereum and payment channel. In addition, 

we describe the cryptographic primitives for DMC: commitment scheme, public key encryption 
scheme and zero-knowledge proof zk-SNARKs. 

 

2.1. Ethereum 
 

In Ethereum, account is an important concept, indexed by address. There are two types of 

accounts — Externally Owned Account (EOA), representing a user with a pair of public key 𝑝𝑘 

and secret key 𝑠𝑘; and contract account, representing a smart contract with code and storage. The 

interaction between accounts is made through transactions generated by EOA. A transaction is 

composed of the destination account address, the transferred amount 𝑣, an optional data field 

𝑑𝑎𝑡𝑎 (specifying the called function and the passed parameters), and a signature, etc. In this 

paper, we denote a specific transaction by tx = (𝑑𝑎𝑡𝑎).; if the transferred amount 𝑣 exists, it 

should be pointed out in addition. Each transaction needs to pay a certain transaction fee for 

operations made in the transaction, which uses gas as the unit for measuring the computational 
and storage resources. Take some contract operations for example, storing costs 20,000 units of 

gas while writing and reading cost 5,000 and 200 respectively [18]. 

 

2.2. Payment Channel 
 

The payment channel technology [19], [20] is an important proposal to address the challenges of 
the scalability and transaction fee. Lightning network [21] and Raiden network [22] are popular 

examples deployed on Bitcoin and Ethereum respectively. In Bitcoin or Ethereum, a payment 

channel is corresponding to a multi-signature address or a smart contract. The payment channel 
technique includes three procedures: (i) opening a channel, the sender deposits into a multi-

signature address/smart contract to create a payment channel; (ii) off-chain transactions, the 

sender sends signed transaction messages directly to the recipient without passing through the 

blockchain network; 3) closing a channel, the recipient withdraws from the channel and the 
remaining coins are returned to the sender. Essentially, the transactions between the two parties 

are the redistribution of the deposit in the channel. 
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2.3. Cryptographic Building Blocks 
 

Next, we will describe the cryptographic building blocks involved in our scheme. More details 

about these cryptographic primitives are available in [23]. In the following, λdenotes the security 
parameter and CRH denotes collision-resistant hash function. 

 

Commitment Scheme. A commitment scheme is composed of two algorithms (Comm, Open) 
such that: 

 

•𝑐𝑚 ← Comm (𝑚, 𝑟): given message 𝑚 and randomness 𝑟, output commitment 𝑐𝑚. 

• {0, 1} ← Open (𝑐𝑚,𝑚, 𝑟): given commitment 𝑐𝑚, message 𝑚 and randomness 𝑟, output 1 if 

𝑐𝑚= Comm(𝑚, 𝑟) and 0 otherwise. 

 

For the purposes of this paper, we will use the commitment scheme which is statistically binding 

and computationally hiding. 

 

Public Key Encryption Scheme. A public key encryption scheme comprises a triple of 

algorithms ( KeyGen, Encrypt, Decrypt) such that: 
 

•(𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆): given security parameter 1𝜆, output a pair of public key 𝑝𝑘 and secret 

key 𝑠𝑘. 

•𝑐 ← Encrypt (𝑝𝑘,𝑚): given public key 𝑝𝑘 and plaintext 𝑚, output ciphertext 𝑐. 

•𝑚 ← Decrypt (𝑠𝑘, 𝑐): given secret key 𝑠𝑘  and ciphertext 𝑐 , output plaintext 𝑚  or an invalid 

symbol ⊥. 
 

In this paper, we directly adopt user's public and secret key on Ethereum. So, it's a good choice to 

use eciespy [24], an Elliptic Curve Integrated Encryption Scheme for Ethereum. 

 
Non-Interactive Zero-Knowledge Proof (NIZK). A non-interactive zero-knowledge proof is a 
two-party protocol between a prover and a verifier with two stages. At the proving stage, the 

prover uses private data to generate the proof without interaction with the verifier. At the 

verifying stage, the verifier checks the validity of the proof while obtaining no more information. 

 
Let ℛ be a binary relation for instance 𝑥 and witness 𝜔, and let ℒ be corresponding language ℒ =
{𝑥 | ∃𝜔: (𝑥, 𝜔) ∈ ℛ}. NIZK is a protocol where a prover tries to convince a verifier that an 

instance 𝑥 is in the language ℒ. In addition, NIZK can permit proving computational statements, 
but the computational problem needs to be converted into an arithmetic circuit. 

 
A NIZK for arithmetic circuit 𝒞 consists of four algorithms (Setup, KeyGen, Prove, Verify) such 

that: 
 

• (𝑝𝑝) ← Setupzkp(1
𝜆): given security parameter λ, output public parameters 𝑝𝑝. 

• (𝑝𝑘, 𝑣𝑘) ← KeyGenzkp(𝑝𝑝,𝒞): given 𝑝𝑝 and arithmetic circuit 𝒞, output proving key 𝑝𝑘 and 

verification key 𝑣𝑘. 

• 𝜋 ← Prove (𝑝𝑘, 𝑥, 𝜔): given proving key 𝑝𝑘, instance 𝑥 and witness 𝜔, output non-interactive 

proof 𝜋 if (𝑥, 𝜔) ∈ ℛ. 

• (0, 1) ← Verify (𝑣𝑘, 𝑥, 𝜋): given verification key 𝑣𝑘, instance 𝑥, and a proof 𝜋, output 1 if 𝑥 ∈
ℒ; otherwise 0. 
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In this paper, we use zero-knowledge Succint Non-interactive ARgument of Knowledge (zk-
SNARK), the most preferable NIZK that has succinct proof size and sublinear verification time. 

zk-SNARK satisfies the following properties: completeness, succinctness, soundness and zero-

knowledge. 

 

3. DECENTRALIZED MIXER 
 

In this section, we present a general decentralized mixing scheme by summarizing existing 

mixing schemes. It utilizes commitment scheme to hide the transaction information and 
meanwhile applies zero-knowledge proof to ensure the validity of transactions. We firstly provide 

data structures used in decentralized mixer, then describe its mixing mechanism. 

 

3.1. Data Structures 
 

Note. Like a cheque, a note 𝑛𝑜𝑡𝑒 includes an owner 𝑝𝑘, a denomination 𝑣 and a random number 

𝑟 (to ensure the uniqueness), i.e., 𝑛𝑜𝑡𝑒 = (𝑝𝑘, 𝑣, 𝑟). The following two concepts are associated to 

a note. 

 

• Commitment, 𝑐𝑚 = Comm (𝑝𝑘, 𝑣, 𝑟): obviously, a commitment 𝑐𝑚 is the commitment to a note 

𝑛𝑜𝑡𝑒 = (𝑝𝑘, 𝑣, 𝑟), used to hide specific information of the note. 

• Serial number, 𝑠𝑛 = CRH (𝑠𝑘, 𝑟): a serial number 𝑠𝑛, also called nullifier, is the hash of 𝑟 and 

the secret key 𝑠𝑘 corresponding to 𝑝𝑘, used to prevent double-spending issues. 

 
CMTree. CMTree denotes a Merkle tree whose leaf nodes are commitments of created notes. 

The existence of commitments in CMTree are viewed as proof of ownership of coins in the 

mixer. Every time a commitment is inserted, the root of CMTree is updated. These generated 
Merkle roots are then added to an array, denoted by Roots. 

 

SNSet. To prevent double-spending issues, all serial numbers of spent notes are recorded in an 
array, denoted by SNSet. If the corresponding serial number is in SNSet, it indicates that the note 

has been spent, otherwise the note can be spent. 

 

3.2. The Mixing Mechanism 
 

In Ethereum, the decentralized mixer is implemented by smart contract. Users make interactions 
with the mixer contract to deposit, transfer and withdraw. The decentralized mixing mechanism, 

described in Figure 1, consists of the next three components. Note that we ignore the Create 

Account algorithm, because it is the same as the creation of accounts in Ethereum. The original 

accounts in Ethereum are completely compatible with our scheme. 
 

Setup. The setup algorithm is executed only once by a trusted third party (TTP) to generate 

public parameters and to deploy a mixer contract. Note that the setup algorithm can use secure 
multi-party computation techniques to mitigate the trust requirement for TTP. 

 

User Algorithms. A user can run the following algorithms to interact with the mixer contract and 

create valid transactions. For convenience, take sender Alice (A) and recipient Bob (B) for 
instance. 

• Deposit: The Deposit algorithm is to convert some Ether into an equivalent note, e.g., Alice 

deposits 𝑣 Ether to mixer. 
• Transfer: The Transfer algorithm is to destroy some old notes and create some new notes. For 

example, Alice uses her two notes to transfer 𝑣𝐵 Ether to Bob. 
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• Withdraw: The Withdraw algorithm is to redeem some note into equivalent Ether, e.g., Bob 

redeems 𝑣𝐵 Ether from mixer. 

 

Mixer Contract. Firstly, users use one of three algorithms mentioned above to generate 

corresponding transactions, and send them to the blockchain network. After users submitting 
transactions, the mixer contract verifies and conducts related operations according to the Verify 

Transaction algorithm. Specifically, the mixer contract is responsible for verifying the correctness 

of transactions (e.g., verifying zero-knowledge proofs and serial numbers), and if passing the 
verification, making corresponding changes (e.g., inserting new commitments into CMTree and 

serial numbers into SNSet). 

 

4. DMC: DECENTRALIZED MIXER WITH CHANNEL 
 
The section gives a detailed description of our scheme based on the decentralized mixing scheme 

in Section 3. We first discuss the intuition of the scheme based on the next three attempts, then 

 

 
 

Figure 1. Decentralized mixer mechanism. 

 

describe the specific construction of the scheme Π = (Setup, Deposit, Open-Channel, Offchain-
Transfer, CloseChannel, Withdraw, VerifyTransaction, VerifyOffchainTransfer). At last, we 

provide the security definitions and proofs of our scheme. 
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4.1. Overview 
 

For further realization of batch accounting, we apply the payment channel technology to the 
decentralized mixer. Specifically, some changes are made to the transfer operation of 

decentralized mixer. Here, we outline our construction in three incremental steps; the 

construction details see below. Note that the scheme of ZETH [11] is taken as base for the 

design of our proposed work. 
 
Attempt 1: the basic framework. We first describe the basis framework of our scheme and 

point out its existing problems. Inspired by existing payment channel schemes in Bitcoin and 

Ethereum, where the channel corresponds to a multi-signature address or a smart contract 

respectively, we match the channel with a channel note denoted by 𝑐ℎ𝑛𝑡. In the OpenChannel 

phase, sender Alice utilizes unspent notes to create a channel note as a channel, i.e., 𝑐ℎ𝑛𝑡𝐴𝐵 =
(𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵), 𝑝𝑘𝐴 denoting the owner of the channel, and 𝑣𝐴𝐵 denoting the deposit locked in 

the channel later used to transfer to the recipient. In the OffchainTransfer phase, whenever Alice 

needs to transfer to Bob, she firstly creates a transaction txOffchainTransfer
𝑖 =

(𝑐ℎ𝑠𝑛𝐴𝐵, 𝑐𝑚𝐵
𝑖 , 𝑐𝑚𝐴

𝑖 , 𝜋OffchainTransfer
𝑖 ) and a note 𝑛𝑜𝑡𝑒𝐵

𝑖 = (𝑝𝑘𝐵, 𝑣𝐵
𝑖 , 𝑟𝐵

𝑖 ), 𝑖 ∈ [1, 𝑛], the value 𝑣𝐵
𝑖  

representing the total amount Alice needs to transfer to Bob so far, and then transfers them to 

Bob through an anonymous network such as Tor [25]. The transactions between two parties are 
essentially the redistribution of the deposit in the channel. In the CloseChannel phase, either of 

them can post the latest transaction message to the blockchain network to get their money back. 

 
However, the above draft may damage the interests of the recipient. The first problem with the 

attempt is that the channel note may be spent many times. For example, during the transaction 

between Alice and Bob, Alice utilizes the same channel note 𝑐ℎ𝑛𝑡𝐴𝐵 to transact with Carl and 

generates 𝑡𝑥OffchainTransfer
′ = (𝑐ℎ𝑠𝑛𝐴𝐵, 𝑐𝑚𝐵

′ , 𝑐𝑚𝐴
′ , 𝜋OffchainTransfer

′ )  and a note 𝑛𝑜𝑡𝑒𝐶 =
(𝑝𝑘𝐶 , 𝑣𝐶 , 𝑟𝐶). When Carl first closes the channel, the mixer verifies and adds 𝑐ℎ𝑠𝑛𝐴𝐵 into SNSet. 
And then when Bob tries to close the channel, his transaction will be rejected because the channel 

note 𝑐ℎ𝑛𝑡𝐴𝐵 has been spent. The second problem is when closing the channel, if the dishonest 

sender submits previous transactions not the latest transaction, i.e., txOffchainTransfer
𝑖 , 𝑖 < 𝑛, not 

txOffchainTransfer
𝑛 , then the interest of recipient will be damaged due to the total transferred 

amount is included in the latest transaction. 
 

Attempt 2: maintaining the recipient's interests. We make the second attempt to address the 

above challenges. To solve the double-spending problem, we require to define the channel's 

recipient 𝑝𝑘𝐵, the channel note being 𝑐ℎ𝑛𝑡𝐴𝐵 = (𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵). When 𝑐ℎ𝑛𝑡𝐴𝐵  is spent to 

create new note 𝑛𝑜𝑡𝑒𝑋 (X is B or C), zero-knowledge proof 𝜋OffchainTransfer is needed to prove 

the recipient in 𝑐ℎ𝑛𝑡𝐴𝐵 is consistent with the owner of 𝑛𝑜𝑡𝑒𝑋. Therefore, the channel 𝑐ℎ𝑛𝑡𝐴𝐵 is 

only used to transact with the recipient defined in the channel note, i.e., 𝑝𝑘𝐵. To prevent the 
sender from broadcasting previous transactions, we rule that only the recipient can close the 

channel. The idea is accomplished by introducing difficult problems: (i) the recipient generates a 

difficult problem 𝑑𝑖𝑓𝑓𝐴𝐵 with a solution 𝑥, and only sends 𝑑𝑖𝑓𝑓𝐴𝐵 to the sender; (ii) the sender 

defines 𝑑𝑖𝑓𝑓𝐴𝐵  in the channel note, i.e., 𝑐ℎ𝑛𝑡𝐴𝐵 = (𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵, 𝑑𝑖𝑓𝑓𝐴𝐵). It requires that 

only the one who knows the solution to the difficult problem can close the channel, so only the 

recipient can make it. 

 
However, the second attempt may harm the interests of the sender. If the dishonest recipient 

never closes the channel, the balance 𝑣𝐴𝐵 − 𝑣𝐵  in the channel will never be returned to the 

sender. Not knowing the solution to the difficult problem, the sender has no choice but to wait the 
recipient to close the channel. This situation will harm the sender's interests. 
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Attempt 3: maintaining the sender's interests. To overcome the above shortcoming, we set a 

deadline for a channel, which requires the recipient to close the channel before the deadline, 

otherwise the sender will have the right to close the channel. When Alice creates a channel, she 

defines a deadline 𝑑𝑑𝑙𝐴𝐵 in the channel note, i.e., 𝑐ℎ𝑛𝑡𝐴𝐵 = (𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵, 𝑑𝑖𝑓𝑓𝐴𝐵, 𝑑𝑑𝑙𝐴𝐵). 
When the deadline has passed, the sender can close the channel by proving that the current time 

is greater than the deadline. In order to prevent the sender from submitting the previous 

transaction when closing the channel, it is required that the recipient ought to close before the 
deadline. 

 

In conclusion, we setup a one-way transaction channel from sender to recipient, which adds the 
defined recipient to prevent double-spending issues; applies difficult problems to ensure the 

interests of recipients; and uses the deadline to urge the recipient to close the channel on time. 

 

4.2. Construction of DMC 
 

In the following description, we detail the construction of DMC based on the mixing mechanism 

in Section 3. A DMC scheme Π  is a tuple of algorithms (Setup, Deposit, OpenChannel, 
OffchainTransfer, CloseChannel, Withdraw, VerifyTransaction, VerifyOffchainTransfer). 

 

Setup. The algorithm generates a list of public parameters. To prove the validity of transactions, 
we build specific circuits which are taken to create keys for proof generation and verification. 

And the mixer contract is deployed on Ethereum. The detailed process proceeds as follows: 

 

 
 

Deposit. The algorithm builds a Deposit transaction txDeposit  to convert some Ether into an 

equivalent note. The transaction txDeposit is composed of these variables. 

 

• A new note commitment 𝑐𝑚. 

• A deposit value 𝑣. 

• A zero-knowledge proof𝜋Deposit, proving the following equation: 𝑐𝑚 = Comm(𝑝𝑘𝐴, 𝑣, 𝑟). 

The detailed process proceeds as follows: 

 

 
 

OpenChannel. The algorithm generates a OpenChannel transaction txOpenChannel, which utilizes 

𝑛 (let 𝑛  =2) notes to create a channel note. The channel note is used as a channel for later 

transactions. The transaction txOpenChannel is composed of these variables. 
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• Two serial numbers of spent notes 𝑠𝑛1 and 𝑠𝑛2. 

• A channel note commitment 𝑐ℎ𝑐𝑚𝐴𝐵. 

• A balance commitment 𝑐𝑚𝑟. 

• The Merkle root 𝑟𝑡. 

• A zero-knowledge proof 𝜋OpenChannel, proving the following equations. 

-𝑐𝑚𝑖 = Comm(𝑝𝑘𝐴, 𝑣𝑖 , 𝑟𝑖), 𝑖 ∈ {1,2}; 𝑐𝑚𝑟 =Comm(𝑝𝑘𝐴, 𝑣𝑟 , 𝑟3). 

-𝑐ℎ𝑐𝑚𝐴𝐵 = Comm(𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵, 𝑑𝑖𝑓𝑓𝐴𝐵, 𝑑𝑑𝑙𝐴𝐵). 

-𝑐𝑚𝑖 ∈ CMTree, 𝑖 ∈ {1,2}. 
-𝑣1 + 𝑣2 = 𝑣𝐴𝐵 + 𝑣3. 

 
The detailed process proceeds as follows: 

 

 
 

OffchainTransfer. The algorithm utilizes the created channel to transfer to the recipient, 

generating an OffchainTransfer transaction txOffchainTransfer  and a new note 𝑛𝑜𝑡𝑒𝐵  which are 

sent to recipient through anonymous network. Every time the sender intends to transfer, she will 

execute the algorithm, redistributing the deposit in the channel. The transaction txOffchainTransfer 

is composed of these variables. 

 

• The serial number of channel note 𝑐ℎ𝑠𝑛𝐴𝐵. 

• A transfer commitment 𝑐𝑚𝐵. 

• A balance commitment 𝑐𝑚𝐴. 

• The Merkle root 𝑟𝑡. 

•A zero-knowledge proof𝜋OffchainTransfer, proving the following equations. 

-𝑐ℎ𝑐𝑚𝐴𝐵 = Comm(𝑝𝑘𝐴, 𝑣𝐴𝐵, 𝑟𝐴𝐵, 𝑝𝑘𝐵, 𝑑𝑖𝑓𝑓𝐴𝐵, 𝑑𝑑𝑙𝐴𝐵). 

-𝑐𝑚𝑖 = Comm(𝑝𝑘𝑖 , 𝑣𝑖 , 𝑟𝑖), 𝑖 ∈ {𝐴, 𝐵}. 
-𝑠𝑛𝐴𝐵  = CRH(𝑠𝑘𝐴 , 𝑟𝐴𝐵). 

-𝑐ℎ𝑐𝑚𝐴𝐵 ∈ CMTree. 

-𝑣𝐴𝐵 = 𝑣𝐵 + 𝑣𝐴. 

 
The detailed process proceeds as follows: 
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CloseChannel. The CloseChannel operation is divided into two cases to discuss. 
 

1) CloseChannelbyDiff. The algorithm describes the recipient generates a CloseChannel 

transaction txCloseChannelbyDiff. The recipient utilizes the solution to difficult problem to 

generate zero-knowledge proof, and posts txCloseChannelbyDiff  to blockchain network 

before the deadline of the channel. The transaction txCloseChannelbyDiff is composed of 

the next variables. 

 

• The latest off-chain transaction txOffchainTransfer. 

• The difficult problem 𝑑𝑖𝑓𝑓𝐴𝐵. 

• A zero-knowledge proof 𝜋Difficulty, proving the following equation: 𝑥 is a solution to 𝑑𝑖𝑓𝑓𝐴𝐵. 

 

The detailed process proceeds as follows: 
 

 
 

2) CloseChannelbyDdl. The algorithm describes the sender generates a CloseChannel 
transaction txCloseChannelbyDdl. If the recipient does not close the channel in time, the 

sender can do by proving to mixer contract that the deadline has passed. The transaction 

txCloseChannelbyDdl is composed of the next variables. 

 

• The latest off-chain transactiontxOffchainTransfer. 

• The difficult problem 𝑑𝑑𝑙𝐴𝐵. 

• A zero-knowledge proof 𝜋Deadline, proving the following equation: 𝑐𝑡 > 𝑑𝑑𝑙𝐴𝐵. 
 

The detailed process proceeds as follows: 
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Withdraw. The algorithm constructs a Withdraw transaction to redeem a note into equivalent 

Ether. The transaction txWithdraw is composed of the following variables. 
 

• The serial number𝑠𝑛𝐵 . 

• The withdraw value𝑣𝐵. 

• The Merkle root 𝑟𝑡. 

• An account𝑟𝑒𝑝𝐴𝑑𝑑𝑟 to receive Ether. 

•A zero-knowledge proof𝜋Withdraw, proving the following equations. 

-𝑐𝑚𝐵 = Comm(𝑝𝑘𝐵, 𝑣𝐵, 𝑟𝐵). 

-𝑠𝑛𝐵  = CRH(𝑠𝑘𝐵 , 𝑟𝐵). 

-𝑐𝑚𝐵 ∈ CMTree. 

The detailed process proceeds as follows: 

 

 
 
VerifyTransaction. This algorithm checks by the mixer contract all transactions except 

OffchainTransfer transactions. The contract verifies the uniqueness of serial numbers, the 

correctness of note commitments and the validity of Merkle root. If all checks are satisfied, it will 

perform corresponding operations: (i) add commitments into CMTree; (ii) append serial numbers 

to SNSet; or (iii) transfer Ether to defined account. The detailed process proceeds as follows: 
 

 
 
VerifyOffchainTransfer. This algorithm checks OffchainTransfer transactions by the recipient. 

If passed, the transaction and note messages are stored. The detailed process proceeds as follows: 
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4.3. Security of DMC 
 
Following the security model defined in the Zerocash [17] and BlockMaze [7], we define two 

secure properties of DMC: transaction unlinkability and overdraft safety. The formal security 

definitions are provided in Appendix A. 

 
Definition 1 (Security). A DMC scheme is secure if it satisfies transaction unlinkability and 

overdraft safety as defined in the experiments in Figure 2. (Note, in DMCΠ,𝒜
TR−UL(λ), participant Of 

denotes sender or recipient of transactions, addrOf denotes addresses of the adversary. In 

DMCΠ,𝒜
OD−SF(λ), InOut is used to compute the income and outcome related to the account of 𝒜.) 

 

1) Transaction unlinkability. The property, defined by the TR-UL experiment, means that no 

probabilistic polynomial-time (PPT) adversary can recognize the transaction linkage 

between the sender and recipient. The scheme Π is transaction unlinkable if 
 

 Pr [DMCΠ,𝒜
TR−UL(λ) = 1] ≤ 𝑛𝑒𝑔𝑙(λ) (1) 

 

where Pr [DMCΠ,𝒜
TR−UL(λ) = 1] represents the winning probability of 𝒜 in the TR-UL experiment. 

 

2) Overdraft Safety. The property, formalized in the OD-SF experiment, shows that no PPT 

adversary can spend more coins than what he deposits and receives from others. The scheme 

Π is overdraft safe if 

 

 Pr [DMCΠ,𝒜
OD−SF(λ) = 1] ≤ 𝑛𝑒𝑔𝑙(λ) (2) 

 

where Pr [DMCΠ,𝒜
OD−SF(λ) = 1] means the winning probability of 𝒜 in the OD-SF experiment. 

 

Theorem 1. The tuple Π  = (Setup, Deposit, OpenChannel, OffchainTransfer, CloseChannel, 

Withdraw, VerifyTransaction, VerifyOffchainTransfer) is a secure DMC scheme. (The proof is 

provided in Appendix B.) 

 

 
 

Figure 2. The transaction unlinkability and overdraft safety experiment for DMC. 
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5. IMPLEMENT AND PERFORMANCE EVALUATION 
 
In this section, we first instantiate cryptographic building blocks, and then implement our DMC 

scheme as a specific mixer contract. At last, we conduct comprehensive experiments to evaluate 

its performance. Our source code will be available at https://github.com/LS291730/DMC. 

 

5.1. Cryptographic Building Blocks 
 
As for collision-resistant cryptographic hash function (CRH), we choose MiMC [26] hash. 

Compared to other hash functions (e.g. SHA-256 and Keccak), MiMC is friendly to arithmetic 

circuits, creating lower number of constraints and operations. The commitment scheme is directly 

instantiated using MiMC hash function, same as the difficult problem and the hash algorithm 
used in the Merkle tree. 

 

We use the eciespy, Elliptic Curve Integrated Encryption Scheme (ECIES) for secp256k1 in 
Python, for the encryption scheme. In this scheme, transaction messages are directly encrypted 

with Ethereum public key and decrypted with Ethereum private key. 

 

We take Groth16 [27] as our instance of zk-SNARKs due to its efficiency in term of proof size 
and verification time. Groth16 is an excellent zk-SNARK proving scheme which, compared with 

other schemes, has a smaller proof size with fixed 256 bytes and a faster verification speed at 

millisecond level. Note that in our implementation, the setup phase of zero-knowledge proof is 
created by a trusted third party. 

 

5.2. Implementation 
 

We implement our DMC scheme based on zk-SNARK tools (e.g. circom [27], a low-level circuit 

language and a compiler, and snarkjs [28], a JavaScript implementation of zk-SNARKs), and 
Ethereum tools (e.g. Web3.py [29], a Python library for interacting with Ethereum, and Ganache, 

a local Ethereum blockchain which generates some virtual accounts that we can use during 

development.). For user algorithms, written by Python, they allow users to create transactions. 
Users can send via Web3.py these transactions to the blockchain network, interacting with mixer 

contract. In addition, we use cir com to construct arithmetic circuits; and later apply zero-

knowledge tool snarkjs to generate and validate zero-knowledge proofs. For mixer contract, it is 

programmed by Solidity, compiled to EVM bytecode and later deployed on Ganache. The 
functions in mixer, such as deposit, openChannel, closeChannel and withdraw, will verify 

corresponding transactions and make corresponding operations. Note that DMC currently only 

supports private transfer of Ether, but can later be expanded to support various tokens, such as 
ERC-20 and ERC-721 tokens. 

 

zk-SNARKs for DMC transactions. For these transactions in DMC (i.e., Deposit, 
OpenChannel, OffchainTransfer, CloseChannel and Withdraw), we utilize zk-SNARKs to 

construct zero-knowledge proofs according to their respective circuits. The common reference 
string (CRS) related to each zero-knowledge proof is generated by a trusted third party and later 

destroyed to guarantee security. And the generated key pairs for proof generation and verification 

are public, available to users and mixer contract. 
 

5.3. Performance Evaluation 
 

We conduct experiments to evaluate the performance of the proposed mixing scheme. First of all, 

we estimate the performance of zero-knowledge proofs. Then, we measure the gas cost consumed 

https://github.com/LS291730/DMC
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by transactions involved in our scheme and analyse the main factors for the gas cost. At last, we 
analyse the decrease in transaction cost and latency. Note that the following experiments are 

executed 10 times and we take the average value. 

 

We now consider the performance of zero-knowledge proofs in terms of setup time, key pair size 
and proof generation/verification time. These are summarized in table 1. Note that the generator 

time refers to the time executing both Setupzkp  and KeyGenzkp  algorithms for each of zero-

knowledge proofs. For each proof, the generator time depends on the complexity of circuit (e.g., 

circuit 𝒞Deposit contains 1 MiMC gadget while circuit 𝒞OpenChannel  contains 6 MiMC gasgets 

and 2 Merkle tree gadgets), the same as the generation time. Furthermore, the generator time is 

linearly dependent on the size of the proving key. Instead, the size of verification key and the 

time of proof verification are maintained stable, irrelevant to the circuit's complexity. 
 

Table 1. The performance of zero-knowledge proofs. 

 

ZKP Generator 

time 

Proving 

key size 

Verification 

key size 

Proof  

generation time 

Proof  

verification time 

Deposit 49.4s 1.0MB 640B 0.77s 0.376s 

OpenChannel 6m51s 6.2MB 832B 1.53s 0.368s 

OffchainTransfer 3m50s 4.1MB 768B 1.33s 0.371s 

Withdraw 52.3s 1.8MB 704B 0.91s 0.360s 

 

The cost to deploy the DMC mixing contract is 2,294,567 gas. Table 2 shows the gas cost 

consumed by these transactions sent to the mixer contract. For Deposit transactions, it consumes 

the first sender 1,090,661 gas to process the first transaction, but 610,653 (given in the table) for 
the other transactions. The extra gas is costed to set storage in the EVM. A majority of the gas 

cost lies in two chief operations: the verification of zero-knowledge proofs and the update of the 

Merkle tree CMTree, both of which cost approximately 200,000 gas. The numbers of verification 
and update operations involved in each transaction are given in Table 3. As seen from the table, 

the CloseChannel transaction costs the most gas while the Withdraw transaction costs the least 

because the former has two verification and update operations respectively while the latter needs 

to verify zero-knowledge proof only once. 
 

Table 2. The gas cost of transactions for interacting with mixer contract. 

 
Transaction Gas cost #VerifyProof #UpdateTree 

txDeposit 610,653 1 1 

txOpenChannel 919,108 1 2 

txCloseChannelbyDiff 1,118,862 2 2 

txCloseChannelbyDdl 1,126,453 2 2 

txWithdraw 288,421 1 0 

 

Compared with related work, the gas cost of related decentralized mixing schemes is given in 

Table 3 (Note that k and 𝑗 denote the number of participants in the ring signature or shuffle and 

the number of malicious shuffles respectively). In the first two schemes, one deposit transaction 
corresponds to one withdrawal transaction without an extra transfer operation. When 

withdrawing from mixer contract, Möbius and Miximus utilize verifiable ring signature and zero-

knowledge proof respectively to create the withdrawal transaction. So, the cost of withdrawal 

operation in Möbius grows linearly with the number of participants in ring signature, and that in 

Miximus is relatively high for proof verification. In MixEth, before withdrawing, several shuffle 

operations are required to perform to break the transaction relationship, and then recipients need 

to check the correctness of the preceding shuffles. The latter two schemes use existing deposits in 
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the mixer to transfer to recipients. Zether costs more gas for applying encryption scheme and Σ-
Bullets to transfer. While in our scheme DMC, because the sender sends transaction messages 

directly to the recipient through anonymous network, there is no need to interact with Ethereum 

network except one transaction to open a channel (919,108 gas) and another to close the channel 

(1,118,862 gas). 
 

Table 3. Comparison between gas costs of different decentralized mixing schemes. 

 
Mixer Deposit Withdraw Transfer Total 

Möbius [9] 76,123 335,714𝑘 - 1,418,979 

Miximus [10] 732,815 1,903,305 - 2,636,120 

MixEth [12] 99,254 113,265 366,216+10,000k+227,563j 1,528,987 

Zether [8] 260,000 384,000 7,188,000 7,832,000 

DMC 610,653 288,421 0 3,547,697/n 

 

For a complete transaction between two parties, the total transaction cost includes depositing, 

transferring (if exists) and withdrawing operations. Here, we set both the number of participants 

in ring signature/shuffle and the number of malicious shuffles to 4, i.e., 𝑘 = 4 and 𝑗 = 4. In our 
scheme, we suppose that the sender and recipient make n off-chain transactions in total via the 

channel, i.e., the number of transactions in batch is 𝑛. Since there is no need for consensus for 

these transactions, the total cost of n transactions only covers depositing, opening and closing of 
channels and withdrawing operations. By comparison with other schemes, the average cost of a 

transaction is 3,547,697/𝑛 , which is approximately 1/𝑛  of others. For the same reason, the 

transaction latency is also about 1/𝑛 of other schemes. Because these 𝑛 transactions are free from 

the effect of the underlying block generation mechanism and network congestion. On the other 
hand, the communication delay of anonymous network, compared with Ethereum network, is 

negligible. 

 
Overall, the experimental results show that our proposed scheme is feasible on Ethereum. From 

theoretical and experimental analysis of DMC, we obtain that the average transaction cost and 

transaction latency are both about 1/𝑛 of other mixing schemes. 

 

6. RELATED WORK 
 

Currently, transaction privacy-preserving schemes mainly include coin mixer, ring signature, 

zero-knowledge proof and trusted computation, etc. However, in this paper, we only focus the 
mixing schemes, more specifically, the decentralized ones. First, based on the balance model, the 

decentralized mixing schemes can be divided into account-based model [8] and UTXO-based 

model [11]. On the other hand, these schemes can also be classified to any mixing amount [8], 

[11] and fixed mixing amount [9], [12]. Some decentralized mixing schemes in the literature are 

briefly introduced as follows. 

 
Mobius [9] presents a decentralized mixer, which only supports for transactions of fixed 

denominations. The scheme just involves deposit and withdrawal operations. To deposit, the 

sender derives a new stealth address to hide the recipient. When withdrawing, the recipient 
generates verifiable ring signature to prove his ownership of coins. The ring signature obscures 

recipients, however the gas cost consumed by signature verification increases linearly with the 

size of recipient set. 
 

Zether [8] proposes an account-based coin mixer, i.e., users' deposits are placed in accounts in the 

form of ciphertext. When transferring, it utilizes homomorphic encryption to hide transaction 
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amount, uses an anonymous account set to hide the sender and recipient, and exploits zero-
knowledge proof to ensure the validity of transactions. Though there is no need for trusted setup, 

the overhead scales linearly with the size of the anonymous set. 

 

MixEth [12], a trustless coin mixer, does not rely on a trusted setup. It uses shuffling method to 
break the relationship of two parties coin mixing, achieving strong notions of anonymity. 

Shuffling and challenging rounds are made in turns. Computing the shuffle is done off-chain, 

verifying the correctness of the new shuffling on-chain. 

 

7. CONCLUSIONS 
 

The decentralized mixing scheme suffers from high transaction cost for complex operations and 

expensive computing resources and long transaction latency for block generation mechanism and 
network congestion. In this paper, we adopt the idea of batch accounting to improve efficiency, 

reducing the transaction cost and latency issues. As the technical support behind batch 

accounting, we introduce payment channel technology into the mixing scheme and propose a 
decentralized mixer with channel called DMC. DMC works well in combination with the 

advantages of decentralized mixer and payment channel, decreasing the transaction cost and 

latency, while breaking the transaction relationship and hiding the transaction value. By the 
created channel, the transactions between two parties are transmitted through anonymous 

network. Since these off-chain transactions avoid network consensus, we achieve the decrease in 

transaction cost and latency. 

 
Future scope of our proposed scheme is (i) There is need of utilizing secure multi-party 

computation (MPC) to avoid the trusted setup of zero-knowledge proof. (ii) The channel between 

the two sides needs to be expanded from one-way to two-way. (iii) The mixer with channel 
scheme will be likely to scale into other blockchain system, such as Bitcoin. (iv) The privacy 

protection method, not just the mixing scheme, can be combined with the two-layer scaling 

solutions to improve performance. 
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APPENDIX A: DEFINITION OF SECURITY 
 

A DMC scheme Π = (Setup, Deposit, OpenChannel, OffchainTransfer, CloseChannel, Withdraw, 
VerifyTransaction) is secure if it satisfies transaction unlinkability and overdraft safety. For 

security definitions, we design two experiments which are employed based on a stateful DMC 

oracle 𝒪DMC . The 𝒪DMC  provides queries for adversary 𝒜 , these queries being interfaces for 

executing the algorithms defined in Π. The oracle is initialized by public parameters pp and stores 

a transaction set TX, a set NCS including a list of a tuple (𝑛𝑜𝑡𝑒, 𝑐𝑚, 𝑠𝑛) and a set of accounts 

Acc. Below, we describe these queries made to the oracle 𝒪DMC. 
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 𝒬= (CreateAccount). The challenger 𝒞 : (i) computes a key pair (𝑠𝑘, 𝑝𝑘) and an address 

𝑎𝑑𝑑𝑟; (ii) adds 𝑎𝑑𝑑𝑟 into Acc; (iii) outputs (𝑎𝑑𝑑𝑟, 𝑝𝑘). 

 𝒬= (Deposit,  𝑣 ,  𝑝𝑘𝐴 ). The challenger 𝒞 : (i) computes a tuple (𝑛𝑜𝑡𝑒, 𝑐𝑚, 𝑠𝑛 ) and a 

transaction txDeposit by calling Deposit algorithm; (ii) adds (𝑛𝑜𝑡𝑒, 𝑐𝑚, 𝑠𝑛) to NCS and 

txDeposit to TX. 

 𝒬 = (OpenChannel, 𝑛𝑜𝑡𝑒1, 𝑛𝑜𝑡𝑒2, 𝑣𝐴𝐵, 𝑝𝑘𝐵 , 𝑑𝑖𝑓𝑓𝐴𝐵, 𝑑𝑑𝑙𝐴𝐵 ). The challenger 𝒞 : (i) 

computes two tuples (𝑐ℎ𝑛𝑡𝐴𝐵 , 𝑐ℎ𝑐𝑚𝐴𝐵, 𝑐ℎ𝑠𝑛𝐴𝐵) and (𝑛𝑜𝑡𝑒𝑟, 𝑐𝑚𝑟, 𝑠𝑛𝑟) and a transaction 

txOpenChannel by calling OpenChannel algorithm; (ii) adds these two tuples to NCS and 

txOpenChannel to TX. 

 𝒬= (CloseChannel, txOffchainTransfer , 𝑥). The challenger 𝒞: (i) computes txCloseChannel  

by calling CloseChannelbyDiff algorithm; (ii) adds txCloseChannel  to TX. Note that we 

only consider the case that the recipient actively closes the channel. 

 𝒬 = (Withdraw,  𝑣, 𝑎𝑑𝑑𝑟 ). The challenger 𝒞 : (i) computes txWithdraw  by calling 

Withdraw algorithm; (ii) adds txWithdraw to TX. 

 𝒬= (Insert, tx). The challenger 𝒞 verifies the output of VerifyTransaction algorithm: if 

the output is 1, adds the tx to TX; otherwise, it aborts. 

 

A.1 Transaction Unlinkability 

 

Let 𝒯 be the set of transaction txOffchainTransfer attached with CloseChannel queries. We define 

the transaction unlinkability experiment DMCΠ,𝒜
TR−UL(λ)as follows. 

 

1) The public parameters 𝑝𝑝 = Setup(1𝜆) are computed and provided to 𝒜. 

2) Whenever 𝒜 queries 𝒪DMC, answer this query with transaction set TX at each step. 

3) Continue answering queries until 𝒜 sends a pair of transactions (tx, tx′) with the requirements: 

(i) (tx, tx′ ∈ 𝒯); (ii) tx ≠ tx′; (iii) the senders and recipients of tx, tx′ are not 𝒜. 

4) The experiment outputs 1 if the senders of (tx, tx′) are same and the recipients of (tx, tx′) are 

also same. Otherwise, it outputs 0. 

 

Definition 2 (TR-UL Security). A DMC scheme Π = (Setup, Deposit, OpenChannel, 
OffchainTransfer, CloseChannel, Withdraw, VerifyTransaction, VerifyOffchainTransfer) is TR-UL 

secure, if for PPT adversary 𝒜, there is a negligible function 𝑛𝑒𝑔𝑙 such thatPr [DMCΠ,𝒜
TR−UL(λ) =

1] ≤ 𝑛𝑒𝑔𝑙(λ). 

 

A.2 Overdraft Safety 

 

We design the overdraft safety experiment, which means PPT adversary 𝒜 tries to attack a given 

DMC scheme. Firstly, we define five variables for the security model. 
 

 𝑣Deposit, the total value deposited by 𝒜. To compute 𝑣Deposit, the challenger 𝒞 finds out all 

Deposit transactions recorded in TX via Deposit queries and sums up these values which 

were transferred from 𝒜. 

 

 𝑣Acc → 𝒜, the total value received by 𝒜 from accounts in Acc. To compute 𝑣Acc → 𝒜, the 

challenger 𝒞 looks up all txOffchainTransfer in CloseChannel transactions recorded in TX via 

CloseChannel queries and adds the values whose recipient are 𝒜. 
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 𝑣Withdraw, the total value redeemed by 𝒜. To compute 𝑣Withdraw, the challenger 𝒞 finds 

out all Withdraw transactions recorded in TX via Withdraw queries and sums up these 

values which were transferred to 𝒜. 

 

 𝑣𝒜 → Acc , To compute 𝑣𝒜 → Acc , the challenger 𝒞  looks up all txOffchainTransfer  in 

CloseChannel transactions recorded in TX via CloseChannel queries and adds the values 

whose sender are 𝒜. 
 

 𝑣unspent , the spendable amount in 𝑐𝑚  and 𝑐ℎ𝑐𝑚 . The challenger 𝒞  can check whether 

corresponding 𝑛𝑜𝑡𝑒/𝑐ℎ𝑛𝑡 is spendable as follows. For 𝑐𝑚, 𝒞 checks if a Withdraw query 

which redeems 𝑛𝑜𝑡𝑒 generates a valid transaction txWithdraw. For 𝑐ℎ𝑐𝑚, 𝒞 first uses 𝑐ℎ𝑛𝑡 

to create an off-chain transaction txOffchainTransfer via a OffchainTransfer query, and then 

checks if a CloseChannel query yields a valid transaction txCloseChannel , which closes the 

channel 𝑐ℎ𝑛𝑡 using txOffchainTransfer. 
 

For an honest account 𝑢, 𝑣Withdraw + 𝑣𝒜→Acc + 𝑣unspent > 𝑣Deposit + 𝑣Acc→𝒜. 

 

Formally, we define the overdraft safety experiment DMCΠ,𝒜
OD−SF(λ) as follows. 

 

1) The public parameters 𝑝𝑝 = Setup (1𝜆) are computed and provided to 𝒜. 

2) Whenever 𝒜 queries 𝒪DMC, answer this query with transaction set TX at each step. 

3) Continue answering queries until 𝒜 sends a set NCS. 

4) Compute the five variables mentioned above. 

5) The experiment outputs 1 if 𝑣Withdraw + 𝑣𝒜→Acc + 𝑣unspent > 𝑣Deposit + 𝑣Acc→𝒜 . 

Otherwise, it outputs 0. 

 

Definition 2 (OD-SF Security). A DMC scheme Π = (Setup, Deposit, OpenChannel, 
OffchainTransfer, CloseChannel, Withdraw,VerifyTransaction, VerifyOffchainTransfer) is OD-
SFsecure, if for PPT adversary 𝒜, there is a negligible function 𝑛𝑒𝑔𝑙 such that 

Pr [DMCΠ,𝒜
OD−SF(λ) = 1] ≤ 𝑛𝑒𝑔𝑙(λ). 

 

APPENDIX B: PROOF OF SECURITY 
 

A DMC scheme Π = (Setup, Deposit, OpenChannel, OffchainTransfer, CloseChannel, Withdraw, 
VerifyTransaction, VerifyOffchainTransfer) is secure if it satisfies transaction unlinkability and 

overdraft safety. 

 

B.1 Proof of Transaction Unlinkability 
 

Let 𝒯 be the set of transaction txOffchainTransfer attached with CloseChannel queries. 𝒜 wins the 

TR-UL experiment when it outputs a pair of transactions (tx, tx′) if the senders of (tx, tx′) are same 

and the recipients of (tx, tx′) are also same. Suppose 𝒜 outputs a pair of transactions 

txCloseChannel , txCloseChannel
′ . The txOffchainTransfer in txCloseChannel satisfies the following 

equations: 

 

1) txOffchainTransfer = (𝑐ℎ𝑠𝑛𝐴𝐵, 𝑐𝑚𝐵, 𝑐𝑚𝐴, 𝑟𝑡, 𝜋OffchainTransfer). 

2) 𝑐𝑚𝐵 = Comm(𝑝𝑘𝐵, 𝑣𝐵, 𝑟𝐵). 

3) 𝑐𝑚𝐴 = Comm(𝑝𝑘𝐴, 𝑣𝐴, 𝑟𝐴). 

 

and the txOffchainTransfer
′  in txCloseChannel

′  satisfies the following equations: 
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1) 𝑡𝑥OffchainTransfer
′ = (𝑐ℎ𝑠𝑛𝐴𝐵

′ , 𝑐𝑚𝐵
′ , 𝑐𝑚𝐴

′ , 𝑟𝑡′, 𝜋OffchainTransfer
′ ). 

2) 𝑐𝑚𝐵
′  =Comm(𝑝𝑘𝐵

′ , 𝑣𝐵
′ , 𝑟𝐵

′ ). 

3) 𝑐𝑚𝐴
′  =Comm(𝑝𝑘𝐴

′ , 𝑣𝐴
′ , 𝑟𝐴

′). 

 

𝒜  wins the TR-UL experiment if the senders and recipients contained in 

(txOffchainTransfer , txOffchainTransfer
′  are the same, i.e., 𝑝𝑘𝐴 = 𝑝𝑘𝐴

′  and 𝑝𝑘𝐵 = 𝑝𝑘𝐵
′ . There are 

two ways for 𝒜 to distinguish whether 𝑝𝑘𝑖 = 𝑝𝑘𝑖
′, 𝑖 ∈ {𝐴, 𝐵}: (i) distinguish public keys from 

commitments; (ii) distinguish public keys from the zero-knowledge proofs. 

 

For condition (i), 𝒜 must distinguish 𝑝𝑘𝑖 = 𝑝𝑘𝑖
′ based on different commitments (𝑐𝑚𝑖 , 𝑐𝑚𝑖

′), 𝑖 ∈
{𝐴, 𝐵} without knowing other secret values, which means that 𝒜  ought to break the hiding 

property of the commitment scheme. For condition (ii), 𝒜 must distinguish 𝑝𝑘𝑖 = 𝑝𝑘𝑖
′, 𝑖 ∈ {𝐴, 𝐵} 

based on different zero-knowledge proofs 𝜋OffchainTransfer, 𝜋OffchainTransfer
′ , which means that 

𝒜 ought to break the proof of knowledge property of the zk-SNARKs. However, due to the 

security of commitment scheme and zk-SNARks, 𝒜 cannot distinguish the two pairs of public 

keys. 

 

B.2 Proof of Overdraft Safety 
 

We modify the overdraft safety experiment without affecting the view of 𝒜 . First, for each 

txOffchainTransfer  inside CloseChannel transaction txCloseChannel in TX, 𝒞  computes a witness 

�⃗⃗� = (𝑐ℎ𝑛𝑡𝐴𝐵, 𝑛𝑜𝑡𝑒𝐵, 𝑛𝑜𝑡𝑒𝐴, 𝑠𝑘𝐴 , 𝑝𝑎𝑡ℎ𝐴𝐵) for the instance 𝑥 = (𝑐ℎ𝑠𝑛𝐴𝐵, 𝑐𝑚𝐵, 𝑐𝑚𝐴, 𝑟𝑡). Then, 𝒞 

constructs an augmented transaction set (TX, W), a list of matched pairs (txOffchainTransfer , �⃗⃗� ). 
 

Definition 3 (Overdraft safe transaction set). An augmented transaction set (TX, W) is overdraft 
safe if the following holds. 

 

1) Each (txOffchainTransfer , �⃗⃗� ) in (TX, W) contains openings (e.g., 𝑐ℎ𝑠𝑛𝐴𝐵) of a channel note 

commitment 𝑐ℎ𝑐𝑚𝐴𝐵 , which is the output of a transaction txOpenChannel  that precedes 

txOffchainTransfer in TX. 
 

2) No two (txOffchainTransfer , �⃗⃗� ) and (𝑡𝑥OffchainTransfer
′ , �⃗⃗� ′) in (TX, W) contain openings of the 

same note commitment. 

 

3) Each (txOffchainTransfer , �⃗⃗� ) in (TX, W) contains openings of 𝑐ℎ𝑐𝑚𝐴𝐵, 𝑐𝑚𝐵, 𝑐𝑚𝐴  to values 

𝑣𝐴𝐵, 𝑣𝐵, 𝑣𝐴 respectively, satisfying 𝑣𝐴𝐵 = 𝑣𝐵, +𝑣𝐴. 

4) For each ( txOffchainTransfer , �⃗⃗� ) in (TX, W), if 𝑐ℎ𝑐𝑚𝐴𝐵  is the output of a transaction 

txOpenChannel in TX, then its witness 𝜔 contains an opening of 𝑐ℎ𝑐𝑚𝐴𝐵 to a value 𝑣 that is equal 

to 𝑣𝐴𝐵. 

 

5) For each (txOffchainTransfer , �⃗⃗� ) in (TX, W), where  txOpenChannel is inserted by 𝒜, it holds 

that if 𝑐ℎ𝑐𝑚𝐴𝐵 is the output of an earlier transaction txOpenChannel, then the public value 𝑣 in 

txOpenChannel is equal to 𝑐ℎ𝑐𝑚𝐴𝐵. 

 

One can prove that (TX, W) is overdraft safe if the equation holds: 𝑣Withdraw + 𝑣𝒜→Acc +
𝑣unspent > 𝑣Deposit + 𝑣Acc→𝒜. For each case mentioned above, we prove that five cases are in a 

negligible probability by way of contradiction. Note that we denote by Pr[𝒜(𝐶𝑜𝑛𝑘
̅̅ ̅̅ ̅̅ ̅) = 1] a non-

negligible probability that 𝒜 wins but violates condition 𝑘, 𝑘 ∈ {1,2,3,4}. 
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𝓐 violates Condition 1. During construction of 𝒪DMC, every (txOffchainTransfer , �⃗⃗� ) in (TX, W) 

where txOffchainTransfer  is not inserted by 𝒜 satisfies condition 1; thus, Pr[𝒜(𝐶𝑜𝑛1
̅̅ ̅̅ ̅̅ ̅) = 1] is a 

probability that 𝒜 inserts txOffchainTransfer to construct (txOffchainTransfer , �⃗⃗� ) ∈ (TX, W) where 

𝑐ℎ𝑐𝑚𝐴𝐵 used in txOffchainTransfer is not the output note commitment of any previous transactions 

before txOffchainTransfer  in TX. 
 

Note that the validity of txOffchainTransfer implies that the witness 𝜔 contains a valid path 𝑝𝑎𝑡ℎ𝐴𝐵 

for a Merkle tree constructed by commitments in earlier transactions. However, a contradiction 

can be found: if 𝑐ℎ𝑐𝑚𝐴𝐵 does not previously exist in TX, then 𝑝𝑎𝑡ℎ𝐴𝐵 is not a valid path but with 

a valid root 𝑟𝑡. Therefore, this violates the property of collision resistance of CRH. 

𝓐  violates Condition 2. When condition 2 is violated, TX contains two 

transactions txOffchainTransfer  and 𝑡𝑥OffchainTransfer
′  that spend the same note commitment 

𝑐ℎ𝑐𝑚𝐴𝐵, and yield two different serial numbers 𝑐ℎ𝑠𝑛𝐴𝐵 and 𝑐ℎ𝑠𝑛𝐴𝐵
′ . Obviously, Pr[𝒜(𝐶𝑜𝑛2

̅̅ ̅̅ ̅̅ ̅) =
1] is a probability that 𝒜 inserts a pair of transactions where 𝑐ℎ𝑐𝑚𝐴𝐵 = 𝑐ℎ𝑐𝑚𝐴𝐵

′  and 𝑐ℎ𝑠𝑛𝐴𝐵 ≠
𝑐ℎ𝑠𝑛𝐴𝐵

′ . However, if the two transactions spend the same 𝑐ℎ𝑐𝑚𝐴𝐵  but create different serial 

numbers, then corresponding witnesses 𝜔 and 𝜔′ include different opening of 𝑐ℎ𝑐𝑚𝐴𝐵.Therefore, 

this contradicts the binding property of the commitment scheme. 

 

𝓐  violates Condition 3.  Pr[𝒜(𝐶𝑜𝑛3
̅̅ ̅̅ ̅̅ ̅) = 1]  is a probability that the equation 𝑣𝐴𝐵 ≠ 𝑣𝐵 + 𝑣𝐴 

holds. When violating condition 3, the equation 𝑣𝐴𝐵 = 𝑣𝐵 + 𝑣𝐴 does not hold, so violating the 

soundness of zk-SNARKs during the construction of zero-knowledge proof 𝜋OffchainTransfer. 

 

𝓐 violates Condition 4. Each (txOffchainTransfer , �⃗⃗� ) in (TX, W) contains values (i.e., 𝑣𝐴𝐵) of 

𝑐ℎ𝑐𝑚𝐴𝐵, and 𝑐ℎ𝑐𝑚𝐴𝐵 is also the output commitment to values (including 𝑣𝐴𝐵
′ ) in a OpenChannel 

transaction txOpenChannel. Obviously, Pr[𝒜(𝐶𝑜𝑛4
̅̅ ̅̅ ̅̅ ̅) = 1] is a probability that the euqation 𝑣𝐴𝐵 ≠

𝑣𝐴𝐵
′  holds. Thus, this contradicts the binding property of commitment scheme. 
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