

David C. Wyld: CSITY, NWCOM, SIGPRO, ASOFT, AIFZ, BDIoT, ITCCMA, CLSB, DTMN, MLNLP - 2021
pp. 27-40, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111403

AN ML-BASED MEMORY LEAK DETECTION

SCHEME FOR NETWORK DEVICES

Minghui Wang, Jiangxuan Xie, Xinan Yang, Xiangqiao Ao

 AI Research Institute, H3C Technology Co., Ltd, China

ABSTRACT

The network is very important to the normal operation of all aspects of society and economy,

and the memory leak of network device is a software failure that seriously damages the stability

of the system. Some common memory checking tools are not suitable for network devices that

are running online, so the operation staff can only constantly monitor the memory usage and

infer from experience, which has been proved to be inefficient and unreliable. In this paper we

proposed a novel memory leak detection method for network devices based on Machine
learning. It first eliminates the impact of large-scale resource table entries on the memory

utilization. Then, by analyzing its monotonicity and computing the correlation coefficient with

the memory leak sequence sets pre constructed by simulation, the memory leak fault can be

found in time. The simulation experiments show that the scheme is computationally efficient and

the precision rate is close to 100%, it works well in the actual network environment, and has

excellent performance.

KEYWORDS

Memory leak, Resource table entry utilization, Correlation coefficient, Time Sequence

monotonicity, Machine Learning.

1. INTRODUCTION

The network is essential to the normal operation of all aspects of society and economy. Many

large-scale network systems require 7x24h uninterrupted operation. Network quality is largely

reflected in the stability and data forwarding ability of network device under long-term work.
These network devices include switches, routers, firewalls, etc. They may have some software or

hardware failures from time to time, and memory leakage is one of the serious software problems.

It seriously damages the stability of the system, even leads to system crash or device restart.

Generally speaking, memory leak refers to that the application program does not release the

memory in time after using it, and the memory can no longer be used by other applications. In

severe cases, the memory will gradually run out, other applications will not be able to apply for the
memory, and the system will crash eventually.

Memory leak detection includes static analysis and dynamic monitoring. Static analysis [1-4] is

usually lexical, grammatical checking and type analysis for source code. The dynamic monitoring
method [5-7] is to insert memory leak detection code at the location of memory operation to track

memory usage, and report detailed information when a leak occurs. These methods require

complex resource managements and modifications to the original application code. Although these
software can effectively detect memory leaks, they have a relatively large run-time overhead and

tend to reduce the efficiency of the system [8].Therefore, these types of check are generally

disabled for the officially released software version, especially for network devices.

http://airccse.org/cscp.html
http://airccse.org/csit/V11N14.html
https://doi.org/10.5121/csit.2021.111403

28 Computer Science & Information Technology (CS & IT)

For network devices, a common way to find memory leaks is to constantly monitor memory
usage. If you find that the memory usage of some application is increasing and significantly

exceeds the normal allowed level, consider the possibility of memory leaks. However, this method

depends heavily on the experience of the operation staff, which means low efficiency and poor

reliability.

In response to the urgent need for online device memory leak detection, this paper designs a

memory leak detection method for network device based on Machine Learning(ML). By
periodically monitoring the number of resource table entries (ARP, Route, MAC, ACL, etc.) and

memory utilization of network devices, we can judge whether there is a potential memory leak and

evaluate the time to reach the memory alarm threshold. Furthermore, the detailed memory usage
information of the device can be obtained through the rule engine, which is convenient for the

operation staff to complete the specific problem diagnosis. This method can detect the device

memory leakage fault conveniently and quickly. It has the characteristics of accuracy, high

efficiency, strong practicability and wide application range. This feature has been applied to Seer
Analyzer—the network analyzer product of H3C company, and has achieved excellent results.

The rest of this paper is organized as follows. In section II some commonly used memory leak
detection methods for network device are briefly described. Section III proposes a memory leak

detection algorithm based on machine learning. Section IV provides some follow-up processing.

Finally, experiment results and conclusions are presented in sections V and VI, respectively.

2. BACKGROUND AND PROBLEM

As mentioned before, for network devices, a common way to find memory leaks is to constantly

monitor memory usage. When memory occupancy is abnormal (for example, the memory exceeds
the alarm threshold, and the memory size increases abnormally), the operation staff check the

occupancy of each memory block, analyze the allocation and release of suspicious memory blocks

and their relationship with related applications, so as to speculate whether the application program
has memory leakage fault.

However, this judgment process may cause false positives in memory leak alarming. For example,

the increase in the usage of some memory blocks is normal. Only by combining the memory
growth rate and the memory footprint with continuous observation can an accurate judgment be

made. Therefore, the use of this method depends heavily on the experience of the operation staff,

which means low efficiency and poor reliability.

In addition, some memory leaks are very slow and require long time (even months) to monitor and

analysis, which greatly increases the difficulty of finding anomalies. Sometimes the continuous

increasing of a small amount of memory may not be a problem. For example, the syslog data
generated during system operation will be stored in the memory file, causing the memory to

increase gradually until the file is written into the Flash or Disk periodically.

The testing department often uses the following methods to check for memory leaks: repeatedly

delivering and deleting configurations, repeatedly delivering and deleting resource table entries,

leaving the configuration or entries unchanged for a period of time to see if there is a big memory
change. Among them, "repeatedly delivering and deleting configurations" rarely appear on actual

network devices, so it is not considered here.

Due to the time limit of the software version plan, it is almost impossible to test the device for too

long. However memory leaks are often related to some configurations or scenarios that require
long-time observation to be found [9]. Considering this, memory leaks are not supposed to be

found completely during the test phase. Consequently, it is necessary to monitor the device

Computer Science & Information Technology (CS & IT) 29

memory, use big data and ML technologies to store and analyze the data, and detect device
memory leaks online.

3. MEMORY LEAK DETECTION ALGORITHM BASED ON MACHINE

LEARNING

In this section, we will introduce the memory leak detection algorithm based on machine learning.
First of all, we exclude the influence of large-scale resource table entries on the memory utilization

of devices and get a new time series called M' sequence. We preliminarily judge whether there is

the risk of memory leakage in this new sequence according to its monotonic rising property.
Moreover, we construct several memory leak sequence sets by simulation and compare the M'

sequence with it. If the average correlation coefficient obtained is greater than a specified

threshold value, it is further confirmed as an outlier.

The proposed scheme is as follows:

3.1. Eliminate the impact of large-scale resource entries on the device memory utilization,

and get a new time series

As we know, most of the large-scale resource table entries on the device, such as ARP table

entries, Routing table entries, MAC table entries and ACL table entries, are dynamically delivered
and deleted, and the large size of these table has a great impact on the device memory utilization.

Therefore, without considering these resource table entries, it doesn't make sense to just monitor

the changes in the device memory utilization. Only when the impact of these large-scale resource
entries is excluded can the risk of possible memory leaks be exposed.

Network device, generally refers to switch or router, its large-scale resource table entries mainly
include ARP entries, Routing entries, MAC entries, ACL entries, etc.

Let the utilization rate of ARP, Route, MAC and ACL entries be a%, b%, c% and d%,
respectively. Here, the utilization rate of ARP entries represents the number of ARP entries

currently used divided by the maximum ARP entry specification, and similar definitions for other

entries. As follows show:

talacl_num_toum_used / d% = acl_n

talmac_num_toum_used / c% = mac_n

m_total/ route_nu_num_used b% = route

talarp_num_toum_used / a% = arp_n

 (1)

Further, let arp_size represent the size of the memory occupied by each ARP entry, then
talarp_num_to_sizeotal = arparp_size_t represents the memory size occupied by the ARP

maximum entry specification, and similar definitions for _totalroute_size , otalmac_size_t ,

and otalarp_size_t .

Now, we can calculate the weighted sum of the utilization of these resource entries:

d%w+c%w+b%w+a%x%=w 4321 (2)

Where w1, w2, w3, and w4 are defined as follows represents the weight values of each resource table

entry’s impact on device memory:

30 Computer Science & Information Technology (CS & IT)

ze_total)tal+acl_siac_size_toze_total+ml+route_si_size_totatotal/(arp=acl_size_w

ze_total)tal+acl_siac_size_toze_total+ml+route_si_size_totatotal/(arp=mac_size_w

)size_totaltotal+acl_+mac_size_size_totaltal+route_rp_size_toe_total/(a=route_sizw

ze_total)tal+acl_siac_size_toze_total+ml+route_si_size_totatotal/(arp=arp_size_w

4

3

2

1

 (3)

Using gRPC[10](Google Remote Procedure Call) technology, network devices periodically send the

utilization rate of memory and the resource tables to the analyzer, each of these data forms a time

series.

), …, dD = (d

), …, cC = (c

), …, bB = (b

), …, aA = (a

), …, mM= (m

n

n

n

n

n

1

1

1

1

1

 (4)

Where M, A, B, C, D represent the time series composed of device memory utilization, ARP entry

utilization, Route entry utilization, MAC entry utilization and ACL entry utilization.

From A, B, C, D, we can calculate their weighted sum at each time point to get a new time

sequence.

 ,…,n ,i=d+wc+wb+wa=w), r, …, rR=(r iiiiin 143211 (5)

Where the value range of ri is [0,100]. We divide the range into 500 equal-length cells with fixed

length of 0.2. Then the number of elements of the sequence R falling between each cell is

calculated and the cell with the largest number is regarded as cell u.

Suppose there are p elements in R whose values belong to cell u and the corresponding time

points are t1', t2',...tp'. Correspondingly, the sequence M takes values at these time points to form a

new sequence：

) m,…, m= (M p
1 (6)

Next, we will examine the monotonicity of the new sequence and its correlation with some known

memory leak sequences to figure out whether the device has memory leakage.

It should be noted that ARP, Route, MAC and ACL table we selected here are the most common

large-scale resource tables. If there are other more large-scale resource tables that may seriously
affect the memory utilization, they also need to be considered here to participate in the

calculation.

For network device, the weight values w1, w2, w3, and w4 barely change with the software version.

Only when there are many significant changes in the processing of related resource table entries

in the software version, their values need to be determined again. Experiments show that even if

the values of these weights are slightly changed, the analysis results will not be affected.

Computer Science & Information Technology (CS & IT) 31

3.2. Determine the monotonicity of the M' sequence

For the memory sequence M' obtained in the previous step, we know that the sum of the memory

occupied by the large-scale resource table entries at each time point is approximately equal. In this

section, we will judge the monotonicity of M' sequence by calculating the correlation coefficient
between the M' sequence and its index sequence (I=(1,2,3,...,p)).

Regarding memory leakage, the memory utilization will keep rising with the passage of time
without the impact of large-scale resource entries. Therefore, if the M' sequence follows the

monotonous upward trend, it indicates that there may be a memory leak. The correlation

coefficient between M' and its index sequence is calculated. Here we use the Spearman algorithm

[11], which is a rank correlation algorithm and does not require the assumption of bivariate normal

distribution, so it has a better effect than the Pearson algorithm in this case. Here, we set the

threshold value of correlation coefficient as 0.9, above which represents the monotonic rising trend

of M' series. See the following experimental section for details.

In order to eliminate random interference, only M' sequence with the memory increment (which is

the difference value between the first item and the last item) exceeding the specified threshold
(e.g. 30Mbytes) will be regarded as the potential memory leakage sequence. Consequently, the

interference of a small increase of memory caused by syslog and diagnostic information of each

software module will be successfully eliminated. In other words, for the sequence (m1', …, mp'), it

is required to satisfy Mem)%*total_mm-m(p 301 , where total_mem is the total memory of the

device.

To sum up, if the sequence meets two conditions: time monotonic growth and the memory
increment exceeds the specified threshold, then the possibility of memory leak of the device can

be preliminarily judged.

3.3. Calculate the average correlation coefficient between M' and simulation-constructed

memory leak sequence sets

In this section, we first assume some memory leak scenarios and construct a set of corresponding
time series. Their M' sequences are calculated respectively to form a simulated memory leak

sequence set.

Due to the monotonous rising trend of memory leakage M' sequence, it has strong correlation

with simulated memory leak sequence; while the normal M' sequence shows random fluctuation

trend, and the correlation with simulated memory leak sequence is very weak. We calculate the

correlation coefficients of the M' sequence and a pre-generated simulated memory leak sequence
by Spearman algorithm and take the average. If the average correlation coefficient is greater than

0.9, it indicates that the M' sequence has a memory leak. Please see the following experimental

section for details.

The processing flow chart of the scheme described in this section is shown below：

32 Computer Science & Information Technology (CS & IT)

Figure 1. Flow chart of the scheme

4. FURTHER PROCESSING

In this section, we first assume some memory leak scenarios and construct a set of corresponding
time series. Their M' sequences are calculated respectively

If it is determined that a memory leak has occurred in a certain M' sequence, by calculating the
memory increment M_Diff of the sequence and the corresponding time difference T_Diff, we can

get the average growth rate of memory leakage iffM_diff/T_d=v . Consequently, we can

estimate the time when the memory reaches the alarm threshold which help the operation staff to

reasonably arrange the time for fault handling. Specifically, the corresponding estimated time is:
 rr%)/v(alarm%-cutotal_mem=Est_T where alarm% represents the memory alarm threshold,

curr% represents the current memory utilization, and total_mem represents the total memory size
of the device, then the memory growth space left to reach the alarm threshold

is curr%)-(alarm%total_mem .

Computer Science & Information Technology (CS & IT) 33

After detecting the memory abnormality, further memory diagnostic tools can be used. As

known, the rule engine [12-13] is a component embedded in the application which can separate
business rules from the business code and use pre-defined semantic specifications to implement

these separated rules. Given input data, the rule engine perform evaluate rules and make

decisions. With the aid of rule engine, we use NETCONF [10] (Network Configuration Protocol)

to interactively obtain the detailed information of each memory block from the device, it can
assist the operation staff to further confirm the problem and find the faulty application module.

5. SIMULATION EXPERIMENTS AND RESULTS

In the simulation experiments, we collected the data of the utilization rate of each resource table
entry and the device memory utilization rate periodically. We collected the data every 5 minutes

over 3 months and the total data point is 25920=330288 . Here 3 scenarios are involved: the

normal situation without memory leaks, the memory leaks of ARP resource entries, and the

random memory leaks of an unknown software module. We use python to complete the
simulations.

The following are the graphs of simulated device memory in three scenarios：

Figure 2. Total memory usage percentage with normal Case

34 Computer Science & Information Technology (CS & IT)

Figure 3. Total memory usage percentage with ARP Leakage

Figure 4. Total memory usage percentage with Random Leakage

The graphics of their corresponding M' sequences are shown below：

Computer Science & Information Technology (CS & IT) 35

Figure 5. M’ sequence with Normal Case

Figure 6. M’ sequence with ARP entry Leakage

36 Computer Science & Information Technology (CS & IT)

Figure 7. M’ sequence with Random Leakage

Above figures clearly show that the memory utilization of normal M' sequence fluctuates slightly

and the curve is random; the memory utilization rate of resource leak M' sequence changes greatly,

showing an obvious monotonous upward trend; while the memory utilization rate of random leak
M' sequence changes little and the overall trend is monotonous increasing.

Next, we simulated 500 sequences for each of the three scenarios and calculated their M'
sequences. Related statistics including the memory increment of the sequence, the time

correlation, and the average correlation coefficient (using Spearman algorithm) with the

simulated memory leak sequences. They are recorded in table 1-3, but only the first 20 pieces of

data are shown.

Table 1. Test Sequences with Normal case

 Memory Difference Corr. with index

sequ.

Corr. with

Resource leak

sequ.

Corr. with random

leak sequ.

1 291248 0.158175215 0.155201666 0.145934015

2 301214 -0.019766941 -0.010182252 0.018031106

3 260485 0.109665269 0.092678231 0.08981839

4 291945 0.112001576 0.165478754 0.174005038

5 290986 -0.094858308 -0.113018566 -0.11931812

6 291624 -0.252379809 -0.22554809 -0.225589206

7 284432 -0.086634815 -0.049478148 -0.048171725

8 344911 0.161756547 0.154608783 0.147779058

9 251442 -0.302939227 -0.208654013 -0.210560823

10 295035 -0.060953324 -0.041223962 -0.049084516

11 276335 0.02740196 0.096420279 0.097325497

12 318737 0.37203624 0.319781804 0.313736033

13 280037 0.073193108 0.084716381 0.089715752

14 295190 -0.013274524 -0.040550019 -0.044731653

Computer Science & Information Technology (CS & IT) 37

Table 2. Test Sequences with Resource Leak case

Table 3. Test Sequences with Random Leak case

15 295725 0.007098027 0.041243151 0.046395803

16 278126 -0.011541039 0.030574502 0.024268845

17 267995 -0.09952762 -0.112263921 -0.115108548

18 298624 0.189605496 0.035233616 0.024033341

19 278243 0.143553709 0.108807238 0.119960642

20 273391 0.090146257 0.128837797 0.129857563

 Memory Difference Corr. with index

sequ.

Corr. with

Resource leak

sequ.

Corr. with random

leak sequ.

1 2789276999 0.999998 0.999956 0.978997

2 2013235537 0.999989 0.999934 0.979096

3 2620491023 0.999892 0.999828 0.978786

4 2807450398 0.999999 0.999963 0.978941

5 2809413438 0.999998 0.999962 0.978945

6 1521223836 0.999991 0.999952 0.978938

7 2202391094 0.999991 0.999952 0.978986

8 972756363 0.999964 0.999926 0.979024

9 2441715706 0.999932 0.999958 0.979001

10 2838246478 0.999997 0.999961 0.978919

11 2436498700 0.999996 0.999963 0.979145

12 2007848751 0.999994 0.999957 0.978956

13 2658185467 0.999999 0.999962 0.978915

14 735720744 0.99997 0.999922 0.978947

15 1690241815 0.999993 0.999914 0.978523

16 2668271684 0.99999 0.999932 0.978854

17 968070171 0.999991 0.999956 0.9791

18 3425955833 0.999997 0.999959 0.978903

19 3530875222 0.999998 0.99997 0.979072

20 1531155291 0.999995 0.999957 0.978918

 Memory Difference Corr. with index

sequ.

Corr. with

Resource leak

sequ.

Corr. with random

leak sequ.

1 39257102 0.999806 0.979739374 0.97879

2 38617581 0.999781 0.979660463 0.978735

3 36811484 0.999386 0.979299968 0.978057

4 40963370 0.999746 0.97967272 0.978652

5 39622467 0.997962 0.977857124 0.976249

6 40131717 0.999658 0.979572898 0.978668

7 37434253 0.999524 0.979181516 0.978452

8 35191411 0.999252 0.979071952 0.978153

9 37450356 0.999353 0.979354171 0.978422

38 Computer Science & Information Technology (CS & IT)

Follow the process shown in Figure 1, the memory increment of normal M' sequence is less than

30M, so they are all judged as normal data. For the ARP table entry memory leak M' sequence, its

time correlation reaches 99.9% on average(greater than 0.9), the average correlation coefficient
with the resource memory leak sequence set is greater than 99% and the average correlation

coefficient with the random memory leak sequence set is greater than 97 %. Apart from these, the

497 out of 500 sequences show large memory increment which are beyond 30M and are judged

as leaked data. For the random memory leak M' sequence, its time correlation reaches 99.9% on
average(greater than 0.9), the average correlation coefficient with the resource memory leak

sequence set is greater than 97% and the average correlation coefficient with the random memory

leak sequence set is greater than 97%. Slightly lower proportion than the ARP table entry
memory leak M' sequence, 452 out of 500 sequences are judged as leaked data. No misjudgment

has been made in all scenarios which shows out 100% precision in automatic check for memory

leak detection.

It should be pointed out that some memory leaks are very slow and do not exceed 30M in 3

months. At this increasing trend, only 360M of memory will be leaked in 3 years, which has little

impact on the system, and it is not necessary to deal with it.

It can be seen from the above simulation experiments that the algorithm described in this article

has outstanding advantages of high efficiency and high accuracy. This solution has been applied
in the Seer Analyzer product of H3C Company which can detect various memory leaks and

achieve excellent performance.

6. CONCLUSION

Memory leaks in network devices make some memory unavailable for subsequent use which may

cause service failure or even system crash in severe cases. Commonly used manual detection

methods are inefficient and error-prone, and cannot perform online and real-time detection for a
large number of network devices. The memory detection scheme proposed in this paper could

automatically check the device memory occupancy rate and combines the resource occupancy

information of various table entries of the device to judge for memory leaks. Then estimate time

to reach memory alarm threshold will be predicted and the rule engine will be used to get more
detailed diagnostic information. The simulation experiments show that the scheme is

computationally efficient and the precision rate is close to 100%, which solves this problem well

and is of great practical significance.

This solution has been applied in the Seer Analyzer product of H3C Company, we also intend to

apply it to the network devices of other companies. It should be noted that different

10 39239786 0.998732 0.978647139 0.977538

11 38587988 0.998366 0.978069213 0.977219

12 39072316 0.99942 0.978734961 0.977913

13 24657491 0.99928 0.979058344 0.978111

14 37803860 0.99986 0.979789375 0.978773

15 37887778 0.999711 0.979627497 0.978657

16 38422163 0.999802 0.979595805 0.978723

17 36231575 0.999263 0.978949737 0.977975

18 36120339 0.99965 0.97959303 0.978576

19 39842950 0.999748 0.979516662 0.978655

20 38039417 0.997934 0.977837991 0.97655

Computer Science & Information Technology (CS & IT) 39

manufacturers have different table item sizes, so the weight values of the tables should be chosen
carefully, they may have an important impact on the accuracy of the algorithm. The table item

sizes even change with the software version, so it is very useful to automatically find the changes

and adaptively adjust parameters.

REFERENCES

[1] John Regehr & Nathan Cooprider & Will Archer, (2006) “Efficient type and memory safety for tiny

embedded systems,” In: Proc of the 3rd workshop on Programming languages and operating systems:
linguistic support for modern operating systems, San Jose, California,pp.22–22.

[2] Thomas A. Henzinger & Ranjit Jhala & Rupak Majumdar & Marco A.A.Sanvido,(2004) “ Extreme

Model Checking,” In Verification: Theory and Practice, Lecture Notes in Computer Science 2772,

Springer-Verlag, pp.332–358.

[3] Hu Yan & Gong Yu-chang & Sun Wei-feng & Zhao Zhen-xi (2008) “Hybrid Static Method for

Memory Leak Detection,” Journal of Chinese Computer Systems, Vol29,pp.1935–1939.

[4] Gong Yu-chang & Hu Yan & Zhang Ye & Zhao Zhen-xi,(2009) “A static memoryleak detection

method for binary programs, ” Journal of University of Science and Technology of China,Vol39,pp.

189–195.

[5] K. Chen & J.-B. Chen.(2007) Aspect-Based Instrumentation for Locating Memory Leaks in Java

Programs. In IEEE International Conference on Computers, Software & Applications (COMPSAC),
pages 23–28.

[6] M. Jump & K. S. McKinley.(2007) Cork: Dynamic memory leak detection for garbage-collected

languages. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), pages 31–38.

[7] C. Jung & S. Lee & E. Raman & S. Pande.(2014) Automated Memory Leak Detection for Production

Use. In International Conference on Software Engineering (ICSE), pages 825–836.

[8] G. Xu & A. Rountev.(2013) Precise Memory Leak Detection for Java Software Using Container

Profiling. ACM Transactions on Software Engineering and Methodology, 22(3):17:1–17:28.

[9] M. D. Bond & K. S. McKinley.(2009) Leak Pruning. In ACM Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), pages 277–288.

[10] Zohaib Latif & Kashif Sharif & Fan Li & Yu Wang.(2020) A comprehensive survey of interface

protocols for software defined networks, Journal of Network and Computer Applications.
[11] R. L. Iman & W. J. Conover.(1982) A distribution-free approach to inducing rank correlation among

input variables. Communications in Statistics: Simulation and Computation, 11(3):311–334.

[12] Yong H. Lee & Suk I.Yo0. (1995) A Rete-based Integration of Forward and Backward Chaining

Inferences, ISIC. Page(s): 611 – 616.

[13] Sun, Y. & Wu, T.Y. & Zhao, G. & Guizani, M., (2015) Efficient rule engine for smart building

systems. IEEE Trans. Comput. 64, 1658–1669. https://doi.org/10.1109/TC.2014. 2345385.

40 Computer Science & Information Technology (CS & IT)

AUTHORS

Minghui Wang received his B.Sc degree and PhD degree in Mathematics from The Peking University, in

1996 and 2001, respectively. Currently, is a Senior Engineer with Institute for Artificial Intelligence, H3C

Co, Ltd. His research interests include IP network communication, data mining and AI.

Jiangxuan Xie received his B.Sc degree in Statistics from The University of Hong Kong, Hong Kong,

China in 2018. Currently, he is a Machine Learning Engineer for H3C, AI Research Institute. His current

research interests include areas of time series analysis, data mining, big-data algorithms.

Yang Xin'an received his B.Sc. degree in electronics and information engineering from Nanjing University

of Science and Technology, Nanjing, China, in 1999 . Currently, he is a Senior Engineer with Institute for

Artificial Intelligence, H3C Co, Ltd. His current research interests include AI, BigData, Network

communication.

Xiangqiao Ao received his B.Sc. degree in Computer Science from Zhejiang University, Hangzhou, China,

in 2001. He has been working in Huawei and H3C since 2001, focusing on IP network communication.

Currently he is in charge of the AI Institute of H3C. His research interests include IP network

communication, AI-based IP network and Autonomous-Driving-Network.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution (CC
BY) license.

http://airccse.org/

	Abstract
	Keywords

