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ABSTRACT 
 

The network is very important to the normal operation of all aspects of society and economy, 

and the memory leak of network device is a software failure that seriously damages the stability 

of the system. Some common memory checking tools are not suitable for network devices that 

are running online, so the operation staff can only constantly monitor the memory usage and 

infer from experience, which has been proved to be inefficient and unreliable. In this paper we 

proposed a novel memory leak detection method for network devices based on Machine 
learning. It first eliminates the impact of large-scale resource table entries on the memory 

utilization. Then, by analyzing its monotonicity and computing the correlation coefficient with 

the memory leak sequence sets pre constructed by simulation, the memory leak fault can be 

found in time. The simulation experiments show that the scheme is computationally efficient and 

the precision rate is close to 100%, it works well in the actual network environment, and has 

excellent performance. 
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1. INTRODUCTION 
 
The network is essential to the normal operation of all aspects of society and economy. Many 

large-scale network systems require 7x24h uninterrupted operation. Network quality is largely 

reflected in the stability and data forwarding ability of network device under long-term work. 
These network devices include switches, routers, firewalls, etc. They may have some software or 

hardware failures from time to time, and memory leakage is one of the serious software problems. 

It seriously damages the stability of the system, even leads to system crash or device restart. 

 
Generally speaking, memory leak refers to that the application program does not release the 

memory in time after using it, and the memory can no longer be used by other applications. In 

severe cases, the memory will gradually run out, other applications will not be able to apply for the 
memory, and the system will crash eventually. 

 

Memory leak detection includes static analysis and dynamic monitoring. Static analysis [1-4] is 

usually lexical, grammatical checking and type analysis for source code. The dynamic monitoring 
method [5-7] is to insert memory leak detection code at the location of memory operation to track 

memory usage, and report detailed information when a leak occurs. These methods require 

complex resource managements and modifications to the original application code. Although these 
software can effectively detect memory leaks, they have a relatively large run-time overhead and 

tend to reduce the efficiency of the system [8].Therefore, these types of check are generally 

disabled for the officially released software version, especially for network devices. 
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For network devices, a common way to find memory leaks is to constantly monitor memory 
usage. If you find that the memory usage of some application is increasing and significantly 

exceeds the normal allowed level, consider the possibility of memory leaks. However, this method 

depends heavily on the experience of the operation staff, which means low efficiency and poor 

reliability. 
 

In response to the urgent need for online device memory leak detection, this paper designs a 

memory leak detection method for network device based on Machine Learning(ML). By 
periodically monitoring the number of resource table entries (ARP, Route, MAC, ACL, etc.) and 

memory utilization of network devices, we can judge whether there is a potential memory leak and 

evaluate the time to reach the memory alarm threshold. Furthermore, the detailed memory usage 
information of the device can be obtained through the rule engine, which is convenient for the 

operation staff to complete the specific problem diagnosis. This method can detect the device 

memory leakage fault conveniently and quickly. It has the characteristics of accuracy, high 

efficiency, strong practicability and wide application range. This feature has been applied to Seer 
Analyzer—the network analyzer product of H3C company, and has achieved excellent results. 

 

The rest of this paper is organized as follows. In section II some commonly used memory leak 
detection methods for network device are briefly described. Section III proposes a memory leak 

detection algorithm based on machine learning. Section IV provides some follow-up processing. 

Finally, experiment results and conclusions are presented in sections V and VI, respectively. 
 

2. BACKGROUND AND PROBLEM 
 

As mentioned before, for network devices, a common way to find memory leaks is to constantly 

monitor memory usage. When memory occupancy is abnormal (for example, the memory exceeds 
the alarm threshold, and the memory size increases abnormally), the operation staff check the 

occupancy of each memory block, analyze the allocation and release of suspicious memory blocks 

and their relationship with related applications, so as to speculate whether the application program 
has memory leakage fault. 

 

However, this judgment process may cause false positives in memory leak alarming. For example, 

the increase in the usage of some memory blocks is normal. Only by combining the memory 
growth rate and the memory footprint with continuous observation can an accurate judgment be 

made. Therefore, the use of this method depends heavily on the experience of the operation staff, 

which means low efficiency and poor reliability. 
 

In addition, some memory leaks are very slow and require long time (even months) to monitor and 

analysis, which greatly increases the difficulty of finding anomalies. Sometimes the continuous 

increasing of a small amount of memory may not be a problem. For example, the syslog data 
generated during system operation will be stored in the memory file, causing the memory to 

increase gradually until the file is written into the Flash or Disk periodically. 

 
The testing department often uses the following methods to check for memory leaks: repeatedly 

delivering and deleting configurations, repeatedly delivering and deleting resource table entries, 

leaving the configuration or entries unchanged for a period of time to see if there is a big memory 
change. Among them, "repeatedly delivering and deleting configurations" rarely appear on actual 

network devices, so it is not considered here. 

Due to the time limit of the software version plan, it is almost impossible to test the device for too 

long. However memory leaks are often related to some configurations or scenarios that require 
long-time observation to be found [9]. Considering this, memory leaks are not supposed to be 

found completely during the test phase. Consequently, it is necessary to monitor the device 
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memory, use big data and ML technologies to store and analyze the data, and detect device 
memory leaks online. 

 

3. MEMORY LEAK DETECTION ALGORITHM BASED ON MACHINE 

LEARNING 
 

In this section, we will introduce the memory leak detection algorithm based on machine learning. 
First of all, we exclude the influence of large-scale resource table entries on the memory utilization 

of devices and get a new time series called M' sequence. We preliminarily judge whether there is 

the risk of memory leakage in this new sequence according to its monotonic rising property. 
Moreover, we construct several memory leak sequence sets by simulation and compare the M' 

sequence with it. If the average correlation coefficient obtained is greater than a specified 

threshold value, it is further confirmed as an outlier. 

 
The proposed scheme is as follows: 

 

3.1. Eliminate the impact of large-scale resource entries on the device memory utilization, 

and get a new time series 

 

As we know, most of the large-scale resource table entries on the device, such as ARP table 

entries, Routing table entries, MAC table entries and ACL table entries, are dynamically delivered 
and deleted, and the large size of these table has a great impact on the device memory utilization. 
 

Therefore, without considering these resource table entries, it doesn't make sense to just monitor 

the changes in the device memory utilization. Only when the impact of these large-scale resource 
entries is excluded can the risk of possible memory leaks be exposed. 

 

Network device, generally refers to switch or router, its large-scale resource table entries mainly 
include ARP entries, Routing entries, MAC entries, ACL entries, etc. 

 

Let the utilization rate of ARP, Route, MAC and ACL entries be a%, b%, c% and d%, 
respectively. Here, the utilization rate of ARP entries represents the number of ARP entries 

currently used divided by the maximum ARP entry specification, and similar definitions for other 

entries. As follows show: 

 

talacl_num_toum_used / d% = acl_n

talmac_num_toum_used / c% = mac_n

m_total/ route_nu_num_used b% = route

talarp_num_toum_used / a% = arp_n

         (1)                                     

 

Further, let arp_size represent the size of the memory occupied by each ARP entry, then 
talarp_num_to_sizeotal = arparp_size_t   represents the memory size occupied by the ARP 

maximum entry specification, and similar definitions for _totalroute_size , otalmac_size_t , 

and otalarp_size_t . 
 

Now, we can calculate the weighted sum of the utilization of these resource entries: 

d%w+c%w+b%w+a%x%=w  4321      (2)                                              

 

Where w1, w2, w3, and w4 are defined as follows represents the weight values of each resource table 

entry’s impact on device memory: 
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Using gRPC[10](Google Remote Procedure Call) technology, network devices periodically send the 

utilization rate of memory and the resource tables to the analyzer, each of these data forms a time 

series. 
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Where M, A, B, C, D represent the time series composed of device memory utilization, ARP entry 

utilization, Route entry utilization, MAC entry utilization and ACL entry utilization. 

 
From A, B, C, D, we can calculate their weighted sum at each time point to get a new time 

sequence. 

 

            ,…,n ,i=d+wc+wb+wa=w), r, …, rR=(r iiiiin 143211     (5)         

 
Where the value range of ri is [0,100]. We divide the range into 500 equal-length cells with fixed 

length of 0.2. Then the number of elements of the sequence R falling between each cell is 

calculated and the cell with the largest number is regarded as cell u. 
 

Suppose there are p elements in R whose values belong to cell u and the corresponding time 

points are t1', t2',...tp'. Correspondingly, the sequence M takes values at these time points to form a 

new sequence： 

 

) m,…, m= (M p
1                                 (6) 

 

Next, we will examine the monotonicity of the new sequence and its correlation with some known 

memory leak sequences to figure out whether the device has memory leakage. 
 

It should be noted that ARP, Route, MAC and ACL table we selected here are the most common 

large-scale resource tables. If there are other more large-scale resource tables that may seriously 
affect the memory utilization, they also need to be considered here to participate in the 

calculation. 

 
For network device, the weight values w1, w2, w3, and w4 barely change with the software version. 

Only when there are many significant changes in the processing of related resource table entries 

in the software version, their values need to be determined again. Experiments show that even if 

the values of these weights are slightly changed, the analysis results will not be affected. 
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3.2. Determine the monotonicity of the M' sequence 

 

For the memory sequence M' obtained in the previous step, we know that the sum of the memory 

occupied by the large-scale resource table entries at each time point is approximately equal. In this 

section, we will judge the monotonicity of M' sequence by calculating the correlation coefficient 
between the M' sequence and its index sequence (I=(1,2,3,...,p)). 

 

Regarding memory leakage, the memory utilization will keep rising with the passage of time 
without the impact of large-scale resource entries. Therefore, if the M' sequence follows the 

monotonous upward trend, it indicates that there may be a memory leak. The correlation 

coefficient between M' and its index sequence is calculated. Here we use the Spearman algorithm 

[11], which is a rank correlation algorithm and does not require the assumption of bivariate normal 

distribution, so it has a better effect than the Pearson algorithm in this case. Here, we set the 

threshold value of correlation coefficient as 0.9, above which represents the monotonic rising trend 

of M' series. See the following experimental section for details. 
 

In order to eliminate random interference, only M' sequence with the memory increment (which is 

the difference value between the first item and the last item) exceeding the specified threshold 
(e.g. 30Mbytes) will be regarded as the potential memory leakage sequence. Consequently, the 

interference of a small increase of memory caused by syslog and diagnostic information of each 

software module will be successfully eliminated. In other words, for the sequence ( m1', …, mp'), it 

is required to satisfy Mem)%*total_mm-m( p 301  , where total_mem is the total memory of the 

device. 

 

To sum up, if the sequence meets two conditions: time monotonic growth and the memory 
increment exceeds the specified threshold, then the possibility of memory leak of the device can 

be preliminarily judged. 

 

3.3. Calculate the average correlation coefficient between M' and simulation-constructed 

memory leak sequence sets 

 

In this section, we first assume some memory leak scenarios and construct a set of corresponding 
time series. Their M' sequences are calculated respectively to form a simulated memory leak 

sequence set. 

 
Due to the monotonous rising trend of memory leakage M' sequence, it has strong correlation 

with simulated memory leak sequence; while the normal M' sequence shows random fluctuation 

trend, and the correlation with simulated memory leak sequence is very weak. We calculate the 

correlation coefficients of the M' sequence and a pre-generated simulated memory leak sequence 
by Spearman algorithm and take the average. If the average correlation coefficient is greater than 

0.9, it indicates that the M' sequence has a memory leak. Please see the following experimental 

section for details. 
 

The processing flow chart of the scheme described in this section is shown below： 
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Figure 1. Flow chart of the scheme 

 

4. FURTHER PROCESSING 
 

In this section, we first assume some memory leak scenarios and construct a set of corresponding 
time series. Their M' sequences are calculated respectively 

 

If it is determined that a memory leak has occurred in a certain M' sequence, by calculating the 
memory increment M_Diff of the sequence and the corresponding time difference T_Diff, we can 

get the average growth rate of memory leakage iffM_diff/T_d=v . Consequently, we can 

estimate the time when the memory reaches the alarm threshold which help the operation staff to 

reasonably arrange the time for fault handling. Specifically, the corresponding estimated time is: 
 rr%)/v(alarm%-cutotal_mem=Est_T   where alarm% represents the memory alarm threshold, 

curr% represents the current memory utilization, and total_mem represents the total memory size 
of the device, then the memory growth space left to reach the alarm threshold 

is curr%)-(alarm%total_mem . 
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After detecting the memory abnormality, further memory diagnostic tools can be used. As 

known, the rule engine [12-13] is a component embedded in the application which can separate 
business rules from the business code and use pre-defined semantic specifications to implement 

these separated rules. Given input data, the rule engine perform evaluate rules and make 

decisions. With the aid of rule engine, we use NETCONF [10] (Network Configuration Protocol) 

to interactively obtain the detailed information of each memory block from the device, it can 
assist the operation staff to further confirm the problem and find the faulty application module. 

 

5. SIMULATION EXPERIMENTS AND RESULTS 
 

In the simulation experiments, we collected the data of the utilization rate of each resource table 
entry and the device memory utilization rate periodically. We collected the data every 5 minutes 

over 3 months and the total data point is 25920=330288  . Here 3 scenarios are involved: the 

normal situation without memory leaks, the memory leaks of ARP resource entries, and the 

random memory leaks of an unknown software module. We use python to complete the 
simulations. 

 

The following are the graphs of simulated device memory in three scenarios： 

 

 
 

Figure 2. Total memory usage percentage with normal Case 
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Figure 3. Total memory usage percentage with ARP Leakage 

 

 

 
Figure 4. Total memory usage percentage with Random Leakage 

 

The graphics of their corresponding M' sequences are shown below： 
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Figure 5. M’ sequence with Normal Case 
 

 

 

Figure 6. M’ sequence with ARP entry Leakage 
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Figure 7. M’ sequence with Random Leakage 

 

Above figures clearly show that the memory utilization of normal M' sequence fluctuates slightly 

and the curve is random; the memory utilization rate of resource leak M' sequence changes greatly, 

showing an obvious monotonous upward trend; while the memory utilization rate of random leak 
M' sequence changes little and the overall trend is monotonous increasing. 

 

Next, we simulated 500 sequences for each of the three scenarios and calculated their M' 
sequences. Related statistics including the memory increment of the sequence, the time 

correlation, and the average correlation coefficient (using Spearman algorithm) with the 

simulated memory leak sequences. They are recorded in table 1-3, but only the first 20 pieces of 

data are shown. 
 

Table 1. Test Sequences with Normal case 

 

 Memory Difference Corr. with index 

sequ. 

Corr. with 

Resource leak 

sequ. 

Corr. with random 

leak sequ. 

1 291248 0.158175215 0.155201666 0.145934015 

2 301214 -0.019766941 -0.010182252 0.018031106 

3 260485 0.109665269 0.092678231 0.08981839 

4 291945 0.112001576 0.165478754 0.174005038 

5 290986 -0.094858308 -0.113018566 -0.11931812 

6 291624 -0.252379809 -0.22554809 -0.225589206 

7 284432 -0.086634815 -0.049478148 -0.048171725 

8 344911 0.161756547 0.154608783 0.147779058 

9 251442 -0.302939227 -0.208654013 -0.210560823 

10 295035 -0.060953324 -0.041223962 -0.049084516 

11 276335 0.02740196 0.096420279 0.097325497 

12 318737 0.37203624 0.319781804 0.313736033 

13 280037 0.073193108 0.084716381 0.089715752 

14 295190 -0.013274524 -0.040550019 -0.044731653 
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Table 2. Test Sequences with Resource Leak case 

 

 

Table 3. Test Sequences with Random Leak case 
 

15 295725 0.007098027 0.041243151 0.046395803 

16 278126 -0.011541039 0.030574502 0.024268845 

17 267995 -0.09952762 -0.112263921 -0.115108548 

18 298624 0.189605496 0.035233616 0.024033341 

19 278243 0.143553709 0.108807238 0.119960642 

20 273391 0.090146257 0.128837797 0.129857563 

 Memory Difference Corr. with index 

sequ. 

Corr. with 

Resource leak 

sequ. 

Corr. with random 

leak sequ. 

1 2789276999 0.999998 0.999956 0.978997 

2 2013235537 0.999989 0.999934 0.979096 

3 2620491023 0.999892 0.999828 0.978786 

4 2807450398 0.999999 0.999963 0.978941 

5 2809413438 0.999998 0.999962 0.978945 

6 1521223836 0.999991 0.999952 0.978938 

7 2202391094 0.999991 0.999952 0.978986 

8 972756363 0.999964 0.999926 0.979024 

9 2441715706 0.999932 0.999958 0.979001 

10 2838246478 0.999997 0.999961 0.978919 

11 2436498700 0.999996 0.999963 0.979145 

12 2007848751 0.999994 0.999957 0.978956 

13 2658185467 0.999999 0.999962 0.978915 

14 735720744 0.99997 0.999922 0.978947 

15 1690241815 0.999993 0.999914 0.978523 

16 2668271684 0.99999 0.999932 0.978854 

17 968070171 0.999991 0.999956 0.9791 

18 3425955833 0.999997 0.999959 0.978903 

19 3530875222 0.999998 0.99997 0.979072 

20 1531155291 0.999995 0.999957 0.978918 

 Memory Difference Corr. with index 

sequ. 

Corr. with 

Resource leak 

sequ. 

Corr. with random 

leak sequ. 

1 39257102 0.999806 0.979739374 0.97879 

2 38617581 0.999781 0.979660463 0.978735 

3 36811484 0.999386 0.979299968 0.978057 

4 40963370 0.999746 0.97967272 0.978652 

5 39622467 0.997962 0.977857124 0.976249 

6 40131717 0.999658 0.979572898 0.978668 

7 37434253 0.999524 0.979181516 0.978452 

8 35191411 0.999252 0.979071952 0.978153 

9 37450356 0.999353 0.979354171 0.978422 
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Follow the process shown in Figure 1, the memory increment of normal M' sequence is less than 

30M, so they are all judged as normal data. For the ARP table entry memory leak M' sequence, its 

time correlation reaches 99.9% on average(greater than 0.9), the average correlation coefficient 
with the resource memory leak sequence set is greater than 99% and the average correlation 

coefficient with the random memory leak sequence set is greater than 97 %. Apart from these, the 

497 out of 500 sequences show large memory increment which are beyond 30M and are judged 

as leaked data. For the random memory leak M' sequence, its time correlation reaches 99.9% on 
average(greater than 0.9), the average correlation coefficient with the resource memory leak 

sequence set is greater than 97% and the average correlation coefficient with the random memory 

leak sequence set is greater than 97%. Slightly lower proportion than the ARP table entry 
memory leak M' sequence, 452 out of 500 sequences are judged as leaked data. No misjudgment 

has been made in all scenarios which shows out 100% precision in automatic check for memory 

leak detection. 

 
It should be pointed out that some memory leaks are very slow and do not exceed 30M in 3 

months. At this increasing trend, only 360M of memory will be leaked in 3 years, which has little 

impact on the system, and it is not necessary to deal with it. 
 

It can be seen from the above simulation experiments that the algorithm described in this article 

has outstanding advantages of high efficiency and high accuracy. This solution has been applied 
in the Seer Analyzer product of H3C Company which can detect various memory leaks and 

achieve excellent performance. 

 

6. CONCLUSION 
 
Memory leaks in network devices make some memory unavailable for subsequent use which may 

cause service failure or even system crash in severe cases. Commonly used manual detection 

methods are inefficient and error-prone, and cannot perform online and real-time detection for a 
large number of network devices. The memory detection scheme proposed in this paper could 

automatically check the device memory occupancy rate and combines the resource occupancy 

information of various table entries of the device to judge for memory leaks. Then estimate time 

to reach memory alarm threshold will be predicted and the rule engine will be used to get more 
detailed diagnostic information. The simulation experiments show that the scheme is 

computationally efficient and the precision rate is close to 100%, which solves this problem well 

and is of great practical significance. 
 

This solution has been applied in the Seer Analyzer product of H3C Company, we also intend to 

apply it to the network devices of other companies. It should be noted that different 

10 39239786 0.998732 0.978647139 0.977538 

11 38587988 0.998366 0.978069213 0.977219 

12 39072316 0.99942 0.978734961 0.977913 

13 24657491 0.99928 0.979058344 0.978111 

14 37803860 0.99986 0.979789375 0.978773 

15 37887778 0.999711 0.979627497 0.978657 

16 38422163 0.999802 0.979595805 0.978723 

17 36231575 0.999263 0.978949737 0.977975 

18 36120339 0.99965 0.97959303 0.978576 

19 39842950 0.999748 0.979516662 0.978655 

20 38039417 0.997934 0.977837991 0.97655 



Computer Science & Information Technology (CS & IT)                      39 

manufacturers have different table item sizes, so the weight values of the tables should be chosen 
carefully, they may have an important impact on the accuracy of the algorithm. The table item 

sizes even change with the software version, so it is very useful to automatically find the changes 

and adaptively adjust parameters.  
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