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ABSTRACT
Let G be a nontrivial link-colored connected network. A link-cut R of G is called a rainbow link-cut if no two of
its links are colored the same. A link-colored network G is rainbow disconnected if for every two nodes u and v
of G, there exists a u-v rainbow link-cut separating them. Such a link coloring is called a rainbow disconnection
coloring of G. For a connected network G, the rainbow disconnection number of G, denoted by rd(G), is defined
as the smallest number of colors that are needed in order to make G rainbow disconnected. Similarly, there are
some other new concepts of network colorings, such as proper disconnection coloring, monochromatic
disconnection coloring and rainbow node-disconnection coloring.

In this paper, we obtain the exact values of the rainbow (node-)disconnection numbers, proper and
monochromatic disconnection numbers of cellular networks and grid networks, respectively.
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1. INTRODUCTION
All networks (also called graphs) considered in this paper are simple, finite and undirected. Let G = (V
(G), E(G)) be a nontrivial connected network with node set V (G) and link set E(G). The order of G is
denoted by n = |V (G)|. For a node v ∈ V (G), the open neighborhood of v is the set N (v) = {u ∈ V
(G)|uv∈ E(G)} and d(v) = |N (v)| is the degree of v, and the closed neighborhood of v is the set N [v]
= N (v) ∪ {v}. The minimum and maximum degree of G are denoted by δ(G) and ∆(G), respectively.
Denote by Pn a path on n nodes. For a subset S of V (G), we use G[S] to denote the subnetwork of G
induced by S. Let V1, V2 be two disjoint node subsets of G. We denote the set of links between V1 and
V2 in G by E (V1, V2). We follow [7] for network theoretical notation and terminology not defined here.

The concept of rainbow connection coloring was introduced by Chartrand et al. [10] in 2008. A
rainbow path is a path whose links are colored pairwise differently. A link-coloring of a network G is
a rainbow connection coloring if any two nodes of G are connected by a rainbow path. The rainbow
connection number of a connected network G, denoted by rc(G), is the minimum number of colors so
that G has a rainbow connection coloring. Rainbow node-connection was proposed by Krivelevich and
Yuster [12] in 2010. For more details about the rainbow (node-)connection, we refer to [13] and
survey papers [14, 16] and book [15].

As we know that there are two ways to study the connectivity of a network, one way is by using paths
and the other is by using cuts. The above rainbow connection and rainbow node-connection use paths.
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So, it is natural to consider the rainbow link-cuts and rainbow node-cuts for the colored connectivity in
colored networks.

In [8], Chartrand et al. first studied the rainbow link-cuts by introducing the concept of rainbow
disconnection of networks, and later produced some other new concepts of colored disconnection
colorings, such as proper disconnection coloring and monochromatic disconnection coloring. Let G be
a nontrivial connected and link-colored network. A link-cut of G is a set R of links of G such that G −
R is disconnected. If all (adjacent, no two) links in R have different colors, then R is called a rainbow
(proper, monochromatic) link-cut. Let u and v be two nodes. A rainbow (proper, monochromatic) link-
cut R is called a u-v rainbow (proper, monochromatic) link-cut if the nodes u and v belong to different
components of G−R. A link-coloring of G is called a rainbow (proper, monochromatic) disconnection
coloring (abbreviated as rd-coloring, pd-coloring and md-coloring) if for every two distinct nodes u
and v of G, there exists a u-v rainbow (proper, monochromatic) link-cut in G, separating them. The
rainbow (proper) disconnection number (abbreviated as rd (pd)-number) rd(G) (pd(G)) of G is the
minimum number of colors required by a rainbow (proper) disconnection coloring of G. The
monochromatic disconnection number (abbreviated as md-number) md(G) of G is the maximum
number of colors required by a monochromatic disconnection coloring of G.

In fact, the rainbow disconnection number has the following application background. In some illegal
commodity transactions, we hope to stop the transaction in time and send out a signal (a certain
frequency). On the one hand, we need to block all the roads between the two cities and identify the
interception locations based on different signals; on the other hand, we want to use as few frequencies
as possible in order to reduce costs. Therefore, we want to know what is the minimum frequency
required to meet the above requirements? Treat each city as a node. If there is a road between two
cities, we add a link between the two nodes, and use G to denote the resulting network. Give a link-
coloring for G, where the color on the link corresponds to the frequency of the road. Therefore, the
above problem is equivalent to calculating the rainbow disconnection number of the network G.

In order to study the rainbow node-cut, we introduce the concept of rainbow node-disconnection
number in this paper. For a connected and node-colored network G, let x and y be two nodes of G. If x
and y are nonadjacent, then an x-y node-cut is a subset S of V (G) such that x and y belong to different
components of G − S. If x and y are adjacent, then an x-y node-cut is a subset S of V (G) such that x
and y belong to different components of (G − xy) − S. A node subset S of G is rainbow if no two nodes
of S have the same color. An x-y rainbow node-cut is an x-y node-cut S such that if x and y are
nonadjacent, then S is rainbow; if x and y are adjacent, then S + x or S + y is rainbow.

A node-colored network G is called rainbow node-disconnected if for any two nodes x and y of G,
there exists an x-y rainbow node-cut. In this case, the node-coloring c is called a rainbow node-
disconnection coloring of G. For a connected network G, the rainbow node-disconnection number of
G, denoted by rnd(G), is the minimum number of colors that are needed to make G rainbow node-
disconnected. A rainbow node-disconnection coloring with rnd(G) colors is called an rnd-coloring of
G.

Remember that in the Menger’s Theorem, only minimum link-cuts play a role, however, in the
definition of rd-colorings we only requested the existence of a u-v link-cut between nodes u and v,
which could be any link-cut (large or small are both OK). This may cause the failure of a colored
version of such a nice Min- Max result. In order to overcome this problem, we introduced the concept
of strong rainbow disconnection in networks in [5], with a hope to set up the colored version of the so-
called Max-Flow Min-Cut Theorem.

A link-colored network G is called strong rainbow disconnected if for every two distinct nodes u and v
of G, there exists a both rainbow and minimum u-v link-cut (rainbow minimum u-v link-cut for short)
in G. Such a link-coloring is called a strong rainbow disconnection coloring (abbreviated as srd-
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coloring) of G. For a connected network G, similarly, the strong rainbow disconnection number (abb-
reviated as srd-number) of G, denoted by srd(G), is the minimum number of colors required to make G
strong rainbow disconnected. We call the colored (dis)connection numbers the global chromatic num-
bers, and the classic or traditional chromatic numbers the local chromatic numbers [6].

The rapid development of computer networks and communication technology, and the rise and wide
application of internet technology have strongly promoted the development of commercial
applications and scientific applications in the network environment, such as grid networks [1, 2, 9] and
cellular networks [18, 19]. The cellular network is a mobile communication hardware architecture that
divides the service of mobile phones into small regular hexagonal sub-areas, and each cell has a base
station, forming a structure that resembles a “cellular” structure. Therefore, this mobile
communication method is called cellular mobile communication method, and its structure can save
equipment construction costs. The grid networks were developed to support large-scale scientific
collaborative work.

Based on the importance of cellular networks and grid networks, it is natural to consider the
disconnection colorings of them.

Consider a (planar, infinite) lattice of congruent regular hexagons (quadrangle) and a cycle C on it.
Then the part of the hexagonal (quadrangle) lattice which lies in the interior of C and the cycle C itself,
forms a cellular networks (grid networks) G [11]. We call the C the boundary of the network G.
Denote by E(G) − C the inner links of G. Obviously, the cellular networks and grid networks are 2-
connected.

This paper is organized as follows. In Section 2, we obtain the (strong) rainbow disconnection
numbers of cellular networks and grid networks. In Section 3, we give the rainbow node-disconnection
numbers of cellular networks and grid networks. In Section 4, we present the proper and
monochromatic disconnection numbers of cellular networks and grid networks.

2. THEIR RD-NUMBERS AND SRD-NUMBERS

For two distinct nodes u and v of G, let λG (u, v) (or simply λ (u, v) when the network G is clear from
the context) denote the minimum number of links in a link-cut F such that u and v lie in different
components of G − F. The minimum cardinality of a link-cut of G is the link-connectivity of G,
denoted by λ(G).

Lemma 2.1 [8] If G is a nontrivial connected network, then

λ(G) ≤ λ+(G) ≤ rd(G) ≤ χ′(G) ≤ ∆(G) + 1,

where the upper link-connectivity λ+(G) is defined by λ+(G) = max{λ(u, v) : u, v∈V (G)}.

Lemma 2.2 [8] Let G be a nontrivial connected network. Then rd(G) = 2 if and only if each block of G
is either K2 or a cycle and at least one block of G is a cycle.

Theorem 2.3 Let G be a cellular network with the number of hexagons h. Then

Proof. If h = 1, then G = C6, so rd(G) = 2 by Lemma 2.2. If h ≥ 2, there exist two nodes u, v of G
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satisfying λ(u, v) = 3. Moreover, we have χ′(G) = ∆(G) = 3 since G is a bipartite network. Hence, we
get rd(G) = 3 by Lemma 2.1.

Theorem 2.4 Let G be a grid network. Then (see Figure 1)

G1 G2 G3

Figure 1: Grid networks in Theorem 2.4.

Proof. If G = G1, then rd(G) = 2. If G3 ⊆ G, then λ+(G) = 4. Moreover, since G is a bipartite network
we have rd(G) ≤ χ′(G) = ∆(G) = 4. Hence, rd(G) = 4.

Suppose that G has a subnetwork that is isomorphic to G2, but no subnetwork that is isomorphic to G3.
Then we get rd(G) ≥ 3 by Lemma 2.1 since λ+(G) = 3. It remains to prove that there exists an rd-
coloring of G using 3 colors. First, we give two observations.

1. For any two nodes x and y of G with d(x) = d(y) = 4, if there has no a parallel 2 (3)-link-cut between x
and y, then we can find a 3-link-cut C(x, y) of x, y in G (see Figure 2).

2. For such two different 3-link-cuts in G, they have at most one common link in G, which ensures that
there exists a coloring using colors [3] so that each 3-link-cut (like C(x, y) in Figure 2) is rainbow.

We now divide these link-cuts into some families of link-cut: if two link-cuts belong to the same
family, then one can find the other link-cut by link transitivity. Let G∗ be the network obtained by
deleting all such 3-link-cuts (like C(x, y) in Figure 2) of G. Note that each nontrivial block of G∗ is a
subnetwork of G3,i (i ≥ 3). We first assign a coloring c0 for one component of G∗, say H0, using colors
[3] so that each set of links incident with a node of degree less than 4 and parallel 2 (3)-link-cuts in G
are rainbow. Then, we color a family of link-cuts connected to the network H0 so that each link-cut is a
rainbow and each node is proper except for the nodes of degree 4 in G, and use H1 to denote the new
colored network. Furthermore, we colored other component of G∗ connected with network H1 and
ensure that each node of H1 is proper except the nodes of degree 4 in G and all parallel 2 (3)-link-cuts
in G are rainbow. Repeatedly, we extent the coloring c0 to a coloring c of G using colors [3] so that
each parallel 2 (3)-link-cut and each set of links incident with a node of degree less than 4 in G is
rainbow.

Now we can verify that the c is an rd-coloring of G. For any two nodes u, v of G, if there exists a node
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C(x, y)

x
2

1 y
1

1 2 2 3 2
3 3

2 3
1 2 2 3 1

3 2 2
2 3 3 2 1 2 2

3 1 1 1 3
2 2

1 2 1
2 3 2 1

3 1 3

Figure 2: A network used in the proof of Theorem 2.4.

with degree less than 4, without loss of generality, say u, then the set Eu of links incident with node u
is a u-v rainbow link-cut. If d(u) = d(v) = 4 and there has a parallel u-v 2 (3)-link-cut, then it is a u-v
rainbow link-cut. If d(u) = d(v) = 4 and there has no parallel u-v 2 (3)-link-cut, then the C(u, v) (like
C(x, y) in Figure 2) in network G is a u-v rainbow link-cut in G.

Furthermore, we study the strong rainbow disconnection numbers of cellular networks.

A trivial link-cut S of G is a link-cut incident with a node.

Lemma 2.5 [5] If G is a connected network with link-connectivity λ(G), upper link-connectivity λ+(G)
and number e(G) of links, then

λ(G) ≤ λ+(G) ≤ rd(G) ≤ srd(G) ≤ e(G). (1)

Lemma 2.6 [17] A 3-connected cubic plane network G is 4-face-colorable if and only it is 3-link
colorable, i.e., χ′(G) = 3.

Lemma 2.7 [4] A cube network G is 3-connected if and only if G is 3-link-connected.

Lemma 2.8 [5] Let G be a nontrivial connected network. Then srd(G) = 2 if and only if rd(G) = 2.

Theorem 2.9 Let G be a cellular network with the number of hexagons h. Then

Proof. If h = 1, then G = C6. By Lemmas 2.2 and 2.8, we have srd(G) = 2. If h ≥ 2, there exist two
nodes u, v of G satisfying λ(u, v) = 3, so srd(G) ≥ 3 by Lemma 2.5. Now we define two operations o
and O as follows.
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Since the network is split into two pieces when we do the operation, then the operation cannot last
endlessly. Hence, there exists a integer r such that Or({G}) = Or+1({G}). Finally, we get a finite
sequence of link-colored cubic networks H = {H1, H2, ,⋯ , Hq}, where q is a positive integer. Note that
the operation does not appear multilinks, and each network of {H1, H2,⋯ ,Hq} is planar. For each
planar network H ∈ H, we can construct a 3-link-connected 3-regular planar network H′. By the
above operation, we know that each 2-link-cut in H is trivial and lies on the boundary of network H.
Let h be the number of nodes with degree 2. Use h to denote the number of trivial 2-link-cuts in
network H and give all nodes with degree 2 a clockwise label using {vi : i ∈ [h]}. If h ≡ 0 (mod 3),
then we add h/3 nodes, and make each node connect with 3 adjacent 2-degree nodes in H (starting
from the node with degree 2 labeled 1, connect the links in turn clockwise, the same below); if h ≡ 1
(mod 3), we add ⌊h/3⌋ − 1 nodes, and make each node connect to the 3 adjacent nodes with degree 2 in
H. For the remaining 4 nodes with degree 2, we add two links vh−3vh−2 and vh−1vh; if h ≡ 2 (mod 3), we
add ⌊h/3⌋ nodes, and make each node connect to the 3 adjacent nodes with degree 2 in H, and then add
a link between the remaining two nodes with degree 2. It is easy to verify that the network H′ is a 3-
link-connected 3-regular plane network. By Lemmas 2.6 and 2.7, it implies that H′ is 3-link-colorable.
Then each network H is 3-link-colorable, and we use color set [3] to assign a proper link-coloring to
each network in H. Then we perform the inverse operation of the shrinking operation. Assume that F1
and F2 are two proper link-colored networks obtained by shrinking the non-trivial 2-link-cut {e1, e2} of
network F, and let c1 and c2 be colorings of networks F1 and F2 using colors [3], respectively.
Obviously, �1 �1 ≠ �1 �2 and �2 �1 ≠ �2 �2 . Now we exchange the colors �1 �1 and �2 �1 , and
colors �1 �2 and �2 �2 in F1 such that the new coloring �1

' of F1 satisfies �1
' �1 = �2 �1 and

�1
' �2 = �2 �2 . Obviously, �1

' is still a proper link-coloring of the network F1 using the color set [3].
Then we can get a link-coloring c0 of network F: let c0(e) = �1

' e , if e∈ F1; let c0(e) = c2(e), if e∈ F2.
Obviously, the c0 is a proper link-coloring of network F. Continue to do this, and finally we get a
proper link-coloring c of the network G using the color set [3].

Now we verify that the link-coloring c of G is a strong rainbow disconnection coloring of the network
G. Let u and v be two nodes of G, and assume that d(u) ≤ d(v). If d(u) = 2, then the link set Eu is a
minimum u-v link-cut of G and rainbow, so the link set Eu is a rainbow minimum u-v link-cut of G; if
d(u) = d(v) = 3 and λ(u, v) = 3, then the link set Eu is a minimum u-v link-cut of G and rainbow, so the
link set Eu is a rainbow minimum u-v link-cut of G; if d(u) = d(v) = 3 and λ(u, v) = 2. By the
contraction operation, we get that u and v belong to different connected components in H (otherwise,
suppose that both u and v belong to a connected component H of H. Since λ(u, v) = 2, and the
shrinking operation does not change the link connectivity of u, v, there is still a nontrivial 2-link-cut
between u and v. This is a contradiction with our operation). Therefore, there exists a rainbow 2-link-
cut C(u, v) between u and v by the process of operation and coloring, and the C(u, v) is a rainbow
minimum u-v link-cut of G. Hence, srd(G) ≤ 3.

Moreover, we conjecture that the strong rainbow disconnection numbers of grid networks are equal to
the rainbow disconnection numbers of grid networks.

Conjecture 2.10 Let G be a grid network (see Figure 1). Then
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3. THEIR RND-NUMBERS

Next, we study the node-version of rainbow disconnection coloring.
Lemma 3.1 [3] If Cn is a cycle of order n ≥ 3, then rnd(Cn) = 2.

Lemma 3.2 [3] If G is a nontrivial connected network and H is a connected subnetwork of G, then
rnd(H) ≤ rnd(G).

Lemma 3.3 [3] Let G be a nontrivial connected network of order n. Then κ(G) ≤κ+(G) ≤ rnd(G) ≤ n.

Theorem 3.4 Let G be a cellular network with the number of hexagons h. Then

Proof. If h = 1, then we have rnd(G) = 2 by Lemma 3.1. If h ≥ 2, we select the common link of some
two hexagons, say v1v2. We have rnd(G) ≥ κG(v1, v2) ≥ 3. For the nodes of G, assign column numbers
according to the order in which they appear from left to right in the lattice shown in the figure 3. For
example, the nodes in the same column which appear first are labeled column 1. Now we give a node-
coloring c of G using three colors. For the nodes in the column j of network G, if j ≡ 1 (mod 3), then
color them by 1; if j ≡ 2 (mod 3), then color them by 2; if j ≡ 0 (mod 3), then color them by 3. Let v be
any node of network G. Assume that v is in the column i of G. If dG(v) = 2, then the neighbors of v are
in columns i − 1, i + 1 or i, i + 1 or i − 1, i. Since the column labels of the neighbors are different
modulo 3, we have NG(v) is rainbow. If dG(v) = 3, then the neighbors of v are in columns i − 1, i, i + 1,
respectively. Since i − 1, i, i + 1 are pairwise different modulo 3, we have that NG(v) is rainbow.

Figure 3: A (planar, infinite) lattice of congruent regular hexagons.

Let x and y be two nodes of network G. If x, y are adjacent, then NG(x) \ {y} is an x-y rainbow node-cut.
If x, y are nonadjacent, then NG(x) is an x-y rainbow node-cut. So c is a rainbow node-disconnection
coloring of network G. We obtain rnd(G) ≤ 3.
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The Cartesian product G 口 H of two internal disjoint networks G and H is the network with node set

V (G) × V (H), where (u, v) is adjacent to (w, x) in G口 H if and only if either u = w and vx∈ E(H) or

uw∈ E(G) and v = x. The m × n grid network Gm,n = Pm口 Pn consists of m horizontal paths Pn and n
vertical paths Pm.

Lemma 3.5 For n ≥ 3, rnd(G3,n) = 3.

Proof. Define a node-coloring c: V (G3,n) → [3] of G3,n. Let c(x1,j) = 1 for j ≡1, 2 (mod 4) and c(x1,j) =
2 for j ≡ 0, 3 (mod 4). We color the second row using color 3. Let c(x3,j) = 2 for j ≡ 1, 2 (mod 4) and
c(x3,j) = 1 for j ≡ 0, 3 (mod 4). We show that c is a rainbow node-disconnection coloring of G3,n. Let
xp,q and xs,ℓ be two nodes of network G3,n, where p ≤ s.

If p = 1, then ���渐ᴀ (xp,q) is rainbow. So when ��渐ᤲ and ��渐ᤲ are nonadjacent, ���渐ᴀ (xp,q) is an xp,q-xs,ℓ
rainbow node-cut; when xp,q and xs,ℓ are adjacent, ���渐ᴀ(xp,q)\{xs,ℓ} is an xp,q-xs,ℓ rainbow node-cut. If s =
3, then ���渐ᴀ(xs,ℓ) is rainbow. Similarly, there is a rainbow node-cut between xp,q and xs,ℓ.

Now consider p = s = 2. Suppose that q < ℓ. If xp,q and xs,ℓ are nonadjacent, {xp−1,q, xp,q+1, xp+1,q} is an
xp,q-xs,ℓ rainbow node-cut. If xp,q and xs,ℓ are adjacent, {xp−1,q, xp+1,q} is an xp,q-xs,ℓ rainbow node-cut.

So we have rnd(G3,n) ≤ 3. Since κ(x1,2, x2,2) = 3, we have rnd(G) ≥ κ(x1,2, x2,2) = 3 by Lemma 3.3. 口

Lemma 3.6 For 4 ≤ m ≤ n, rnd(Gm,n) = 4.

Proof. Define a node-coloring c of Gm,n: V (Gm,n) → Z4. Let c(xi,1) = i (mod 4), c(xi,2) = c(xi,3) = i + 2
(mod 4) and c(xi,4) = i (mod 4). Other remaining columns repeat the coloring of first four columns.

Let u be a node of Gm,n and Nr(u) (Nc(u)) denote the neighbors of u in the same row (column). Assume
that c(u) = a. If |Nr(u)| = 2, then two nodes of Nr(u) are assigned a and a + 2 respectively; if |Nr(u)| = 1,
then it is assigned a or a + 2. If |Nc(u)| = 2, then two nodes of Nc(u) are assigned a − 1 and a + 1
respectively; if |Nr(u)| = 1, then it is assigned a − 1 or a + 1. Thus, ���渐ᴀ(u) is rainbow.

For any two nonadjacent nodes x and y of ��渐ᴀ , ���渐ᴀ (x) is an x-y rainbow node-cut. For any two
adjacent nodes x and y of ��渐ᴀ, ���渐ᴀ(x) \ {y} is an x-y rainbow node-cut. The coloring c is a rainbow

node-disconnection coloring of ��渐ᴀ ,. Hence, rnd(G) ≤ 4. On the other hand, κ (�2渐2 , ��渐� ) = 4. It

follows by Lemma 3.3 that rnd(��渐ᴀ,) ≥ κ(�2渐2, ��渐�) = 4.

For a node-cut S of G, we denote the connected components of G − S by G1, G2, · · · , Gs. Then we add
S to these components and get networks G[V (G1) + S], G[V (G2) + S], · · · , G[V (Gs) + S]. This
operation is called that we split the node-cut S.

If the nodes of a 2-node-cut of G are adjacent, then we say the 2-node-cut is an adjacent 2-node-cut.

Theorem 3.7 Let G be a grid network. Then (as shown in Figure 4)
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Figure 4: Grid networks in Theorem 3.7.

Proof. If G = G1, then we have rnd(G) = 2 by Lemma 3.1. If G3 ⊆ G or G4 ⊆ G, then rnd(G) ≥ κ+(G) ≥
4 by Lemma 3.3. Since G is the subnetwork of some grid network Gm,n, we have rnd(G) ≤ rnd(Gm,n) =
4 by Lemmas 3.2 and 3.6.

Now consider G2 ⊆ G and G3, G4 G.

We have rnd(G) ≥ κ+(G) ≥ κ+(G2) ≥ 3. If G = G3,n, then rnd(G) = 3 by Lemma 3.5.

If G ≠ G3,n, then there exists an adjacent 2-node-cut. We split all adjacent 2-node-cuts. Then we can
get networks H1, H2, ⋯ , Hℓ. Obviously, each Hi is a 4-cycle or G3,n. Then we do the following
operations.

1. Select the network H1 and color H1 using rnd-coloring c1. Let H = H1 and cH = c1.

2. Select the network Hi which has a common adjacent 2-node-cut S with network H and color Hi

using rnd-coloring ci.

3. Let H = H∪ Hi and cH = cH + ci. If H and G are not isomorphic, then return to step 2.

The rnd-colorings ci (i∈ [ℓ]) are as follows.

c1: If H1 is a 4-cycle, then we assign color 1 to two adjacent nodes and assign 2,3 to the remaining two
nodes. If H1 is G3,n, then we color it using the same coloring as Lemma 3.5.

ci (i∈ {2, 3,⋯ , ℓ}): Assume that S = {u, v}. Let ci(u) = cH (u) and ci(v) =cH (v).

If Hi is a 4-cycle, we denote the 4-cycle containing link uv in H by Ci. We color the neighbors of u and
v in Hi using the colors different from ��� � and ��� v respectively. Obviously, we finish the color
of Hi.

Next, consider Hi = G3,n. Obviously, u, v have at least one node with degree four in G and degree two
in H. Without loss of generality, assume that dG(v) = 4 and dH (v) = 2. Let NH (v) = {u, v1}. We use two
stages to color Hi.

▪ If dG(u) = 3, then color the neighbor of u in Hi such that NG(u) is rainbow.

If dG(u) = 4, then ��� � = 2. Let ��� � = {�渐�1}. When {u, v, v1} is rainbow, let ci(u1) = ci(u);
otherwise, color u1 such that {u1, v1, u} is rainbow.

▪ Color the remaining nodes of Hi according to Figure 5.
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In first stage, we color three nodes of Hi. No matter how we color it, the colors of three nodes have
three cases as shown in Figure 5, where the three nodes are marked by stars and {a, b, c} = {1, 2, 3}
are three different colors.

In second stage, for the networks in Figure 5, other columns of H′, H′′ and H′′′ repeat the colors of
columns 1-4.

Similar to the proof of Lemma 3.5, we can get that ci is an rnd-coloring of Hi for i∈ [ℓ].

Figure 5: Three node-colorings of G3,n.

Now we claim that the node-coloring of H∪ Hi is an rnd-coloring. Based on the process of coloring,
the neighborhoods of nodes with degree less than four are rainbow. So we only need to consider two
nodes with degree four.

Let x, y be two nodes of H ∪ Hi with degree four. Assume that RH is an x-y rainbow node-cut of H
under cH . Let Ri be an x-y rainbow node-cut of Hi under ci. Consider {x, y} = {u, v}. Then {u1, v1, v}
or {u1, v1, u} is an x-y rainbow node-cut of H∪ Hi.

Consider {x, y}≠{u, v}. If x, y∈ V (H), then RH is an x-y rainbow node-cut of H∪ Hi. If x, y∈ V(Hi),
then Ri is an x-y rainbow node-cut of H∪ Hi. If x∈ V (H) \ {u, v}, y∈ V (Hi) \ {u, v} or x∈ V (Hi) \
{u, v}, y∈ V (H) \ {u, v}, then {v, u1} is an x-y rainbow node-cut of H∪ Hi.

So the above operations keep new network H = H∪Hi rainbow node-disconnected. Therefore, rnd(G)
= 3.

4. THEIR PD-NUMBERS AND MD-NUMBERS

Furthermore, we obtain the proper and monochromatic disconnection numbers of cellular networks
and grid networks.

Observation 4.1 Let G be a cellular network. Then pd(G) = 1.

Observation 4.2 Let G be a grid network. Then pd(G) = 1.

Theorem 4.3 Let G be a cellular network with the number of hexagons h, the number of inner links m
and the boundary C. Then md(G) = 3h − m = |C|/2.

Proof. Observe that each color appears at least 2 times in an md-coloring, so one hexagon has at most
3 colors. If two hexagons have a common link, then the two hexagon use at most 5 colors under an
md-coloring in G. Then an md-coloring of G has at most 3h − m colors since G has m pairs of
hexagons with a common link. Namely, md(G) ≤ 3h − m.
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Now we give a coloring f of G. First, we give a link partition for G. For two adjacent hexagons H1, H2,
let e be the common link of H1, H2. Then there are opposite links e1 and e2 of e in H1 and H2,
respectively. If e1 or e2 is not a bounded link, then we continue to find the opposite link of e1 or e2 in
other hexagon, and call all these opposite links a relative link set, denoted by Mi, (i ∈ [t]). Observe
that E(G) = �=1

� ��� and t = |C|/2. Next, for each i∈ [t], we assign color i to all links of Mi, therefore
|f | = t. Moreover, we get |f | = 3h − m since |C| + m = 6h − m. It is easy to verify that the coloring f is
an md-coloring of G. Hence, md(G) = 3h − m.

Theorem 4.4 Let G be a grid network with the number of quadrangle h, the number of inner links m
and the boundary C. Then md(G) = 2h − m = |C|/2.

The proof of Theorem 4.4 is similar to the argument of Theorem 4.3.

5. CONCLUSIONS

In this paper, we get the exact values of the rainbow (node-)disconnection numbers, proper and
monochromatic disconnection numbers of cellular networks and grid networks, respectively, and we
conjecture that the strong rainbow disconnection numbers of grid networks are equal to the rainbow
disconnection numbers of grid networks.
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