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ABSTRACT 

 
Recently, speaker embedding extracted by deep neural networks (DNN) has performed well in 

speaker verification (SV). However, it is sensitive to different scenarios, and it is too 

computationally intensive to be deployed on portable devices. In this paper, we first combine 

rhythm and MFCC features to improve the robustness of speaker verification. The rhythm 

feature can reflect the distribution of phonemes and help reduce the average error rate (EER) in 

speaker verification, especially in intra-speaker verification. In addition, we propose a multi-

task knowledge distillation architecture that transfers the embedding-level and label-level 

knowledge of a well-trained large teacher to a highly compact student network. The results 

show that rhythm features and multi-task knowledge distillation significantly improve the 

performance of the student network. In the ultra-short duration scenario, using only 14.9% of 
the parameters in the teacher network, the student network can even achieve a relative EER 

reduction of 32%. 
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1. INTRODUCTION 
 

Using Deep Neural Network (DNN) to extract speaker embeddings has shown impressive 
performance in speaker verification (SV). Speaker embeddings denote fixed-dimensional vector-

based representations for modeling the characteristics of speakers. 

 

Gaussian Mixture Network-Universal Background Network (GMM-UBM) system dominated the 
SV field for one decade since proposed in [1]. Inspired by Joint Factor Analysis in [2], i-vector 

[3] was proposed and represented the state-of-the-art speaker networking framework. Recently, 

speaker embeddings [4, 5, 6, 7] learning with DNN has become mainstream for speaker 
networking in SV. By averaging the frame-level extracted deep features, the segment-level 

representation of a recording is obtained, which is called d-vector [8]. Some researchers follow 

and extend this work by replacing the simple neural network with complicated architectures such 
as Convolutional Neural Network (CNN) and Time-Delay Neural Network (TDNN) or redesign 

the optimization metric and propose new embeddings such as j-vector [9]. Instead of training the 
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DNN on the frame level, researchers in [10] add a temporal pooling layer and train the network 
on the segment level, which is called x-vector. It is proven to achieve excellent performance. 

 

Advanced loss functions also benefit to build a more powerful deep architecture, such as triplet 

loss [6], the generalized end-to-end loss [11], and the angular softmax [5]. The angular softmax 
(A-softmax) modifies the softmax loss function to learn angularly discriminative embeddings and 

adds a controllable parameter to pose constraints on the intra-speaker variation of the learned 

embedding. 
  

Even if the methodology above reported impressive low error rates (≈1\% [3]), SV is still 

challenging in different trial conditions and linguistic environments like diverse phonological 
content. Besides, x-vector is too computationally intensive to be deployed on portable devices. 

 

Among the efforts to compress these networks, knowledge distillation is a natural method, where 

a large network (teacher) provides weighted targets to guide the training of a small network 
(student). However, previous studies only explored the effect of single-level knowledge 

distillation on speaker embedding performance, and single-level knowledge distillation was not 

effective enough to obtain highly compact networks with better performance than large networks.  
In this paper, phonological content is considered in extracting speaker acoustic features to 

improve the performance of intra-speaker verification. We calculate seven rhythmic parameters, 

which is based on temporal characteristics of speech intervals. Then we concatenate these rhythm 
features with MFCC features. Besides, we aim to build small networks that need much fewer 

resources and are more suitable for deployment without performance degradation. Multi-task 

knowledge distillation utilizes the embedding-level and label-level output of teacher networks 

[12] to guide the training of student networks, to reduce the performance gap between student 
networks and teacher networks. Sometimes, student networks even outperform teacher networks, 

because of the dark knowledge [13] transferred in distillation. 

 
The main contributions of this article are as follows: 

 

1. The fusion of rhythm feature and MFCC feature: rhythm parameters are multiplied by a 

weight factor, and then concatenated with the MFCC feature. 
  

2. Multi-task knowledge distillation: The main task is to force the student network to emit 

posterior probabilities similar to the hard speaker labels. Besides, we utilize label-level and 
embedded-level knowledge distillation to guide the training of the highly compact student 

network as two auxiliary tasks. The total loss comes from these three tasks. 

 
3. A highly compact student network has competitive performance with the teacher network: 

In the ultra-short duration scenario, a student network can even achieve a 7.02% relative 

EER reduction, using only 13% of the parameters in the teacher network. We studied the 

effects of deep speaker embedding, A-softmax, rhythm features, and multi-task knowledge 
distillation on intra- and inter-speaker verification (false miss and false alarm), which shed 

light on the success of our methods.   

 
The rest of the article is organized as follows. Section 2 briefly introduces deep speaker 

embedding learning. Section 3 introduces the multi-task knowledge extraction with rhythm 

function. Sections 4 and 5 show the experimental setup and results, respectively. Section 6 
summarizes the paper. 
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2. RELATED WORK  
 

2.1. Deep Speaker Embedding Learning 

 
Deep speaker embedding learning has been dominating the field of text-independent speaker 

verification. Powered by advanced computational resources, and large-scale speech datasets, e.g., 

VoxCeleb and speaker verification corpora packaged by the National Institute of Standards and 

Technology (NIST), it is possible to train very deep networks to extract speaker embeddings 
(segment-level representations). 

  

Statistic	Pooling

				.	.	.

				.	.	.

Speaker

Embedding

					.	.	.

P(spk1) P(spkn)

Utterance	Level

...

Frame	Level

xt

TDNN	layer

 
 

Figure 1 Network architecture of x-vector 

 
In this paper, we adopt the normal x-vector architecture. The DNN used in the x-vector is 

depicted in Figure 1, and the detailed network configuration is described in Section 4.1.1. In our 
work, the pooling mechanism calculates the mean and standard deviation of the frame-level 

representations, but several studies have extended it to multi-head attention layers [20, 21] and 

learnable dictionary layers. We use angular softmax loss (A-softmax) as the training criterion, 

which was proposed for face recognition and introduced to speaker verification in [22, 23]. The 
back-end technology is cosine distance scoring and probabilistic linear discriminant analysis 

(PLDA) [24, 25]. 

  

2.2. Knowledge Distillation 

 
There have been efforts to compress these networks, e.g., parameter pruning and sharing [26], 

low-rank factorization [27] and knowledge distillation [29, 30]. Knowledge distillation has 

proven a promising way to narrow down the performance gap between a small network (student) 
and a large network (teacher). It works by adding a term to the usual classification loss, which 

encourages students to imitate the behavior of teachers. However, knowledge distillation for deep 

speaker embedding has not been investigated thoroughly in the literature. [29] built a distillation 

framework to learn the distribution of embedding vectors directly from the teacher. [30] further 
recommends using the teacher's speaker posterior probability as reference labels for the student. 

These previous studies only explored the effect of single-layer knowledge distillation on speaker 

embedding performance, and single-layer knowledge distillation was not effective enough to 
obtain highly compact networks with better performance than large networks. 
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3. MULTI-TASK KNOWLEDGE DISTILLATION FOR DEEP SPEAKER 

EMBEDDING 
 

This section describes the speaker verification systems developed for this study, which consist of 
fusion features, and multi-task knowledge distillation. Our experiments are based on the Kaldi 

speech verification toolkit [14]. 

 

3.1. Fusion of Rhythm Features and MFCC Feature 

 

TDNN	Layers

MFCC γ	 Rhythm

Features

Soft	Fusion	Rhythm	Features

 
 

Figure 2 Fusion of rhythm features and MFCC feature 

 

Rhythm variations are proven to have virtually a significant impact on intra-speaker verification, 

which are commonly used in the field of speech rhythm research [15, 16, 17, 18]. In this paper, 
we introduce seven rhythm variation measurements to improve speaker verification performance: 

%VO ,  VO , VarcoUV , VarcoVO , %(UV
i+1

>VO
i
) , Average pair( )  and VarcoPair , 

which are formulated in [19].  

 
In the x-vector framework, silenced frames are filtered out by voice activity detection (VAD). As 

shown in Figure 2, we multiply rhythm features with a weight factor g , then combine them with 

MFCC feature. Our rhythm variation measurements are based on voiced and unvoiced durations 
(including pauses), which is detected via python interface of the WebRTC VAD. Our experiment 

in Section 5.1 will investigate the best value of g  for fusion. 

 

3.2. Multi-task Knowledge Distillation 
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Figure 3 Multi-task knowledge distillation architecture: The system consists of three parts, the teacher 

network (in Grey), the student network (in Red), and three training tasks. 
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Multi-task knowledge distillation forces the student network to train on multiple different, but 
related knowledge distillation tasks, which can make better use of the teacher network. As shown 

in Figure 3, the multi-task knowledge distillation for deep speaker embedding network includes 

three tasks: 

 
1. The main task (see Equation 1) is to train the student speaker embedding network over the 

same set of speakers directly with hard speaker labels, just like what we did for a teacher 

network. 
 

2. Label-level knowledge distillation (see Equation 3), where the optimization of the student 

network is guided by the posteriors predicted by a well pre-trained teacher network. 
 

3. Embedding-level knowledge distillation (see Equation 4), which directly constrains the 

similarity of speaker embeddings learned from the teacher and student network. 

 
For the main task, instead of using the categorical cross-entropy for training, we use the A-

softmax loss for classification. A-softmax has more stringent requirements for correct 

classification when m³ 2  (an integer that controls the angular margin), which generates an 
angular classification margin between embeddings of different classes. The A-softmax loss is 

formulated in Equation 1: 

 

L
A-softmax

= -
1

N
l

i=1

N

å og
e

||x
i
||y (q

yi ,i
)

Z
   (1) 

Z = e
x
i
yq

j ,i +
j=1, j¹ y

i

N

å e
x
i

cos(q
j ,i

)
, y (q

y
i
,i
) = (-1)k cos(mq

y
i
,i
) - 2k , (2) 

 

where N  is the number of training samples; x
i
 is the input of the last (i.e. output) layer; y

i
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j
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We distill the knowledge from the output of label-layer. Label-level knowledge distillation means 
the optimization of student network is guided by the posteriors predicted by a pre- trained teacher 

network. The objective is defined as:  

 

,  (3) 

where C  is the number of speakers in the training set;  is the posteriors of the i-th sample 

predicted by the teacher network. Other definition of symbols is the same as Equation 1. 

 

In addition to the label-level knowledge distillation, Assuming the student and teacher produce 

the same dimension of speaker embeddings, embedding-level knowledge distillation directly 
constrains the similarity of speaker embeddings learned from the teacher and student network, 

which is formulated as:  

L
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where v
i

t
 represents the embedding computed by the teacher network for the ith  sample; v

i

s
 

denotes the embedding computed by the student network.  
 

In the optimization, losses of these three tasks are combined to train the student network as: 

 

L
total

= L
A-softmax

+aL
KLD

+ bL
COS

, (5) 

 

where a  and b  are hyper-parameters to balance three losses. 

 

4. EXPERIMENTAL SETUP 

 
4.1. Dataset 

 
We evaluate the performance of our method on a short duration text-independent dataset called 

XiaoAi-Speech, which consists of 230288 clean utterances from 448 male individuals. Each 
utterance varies between 1 and 8 seconds (before removing the silenced frames). The database 

contains almost 320h recordings. It is mainly used for short-duration speech processing as it 

contains relatively short-duration phrases. Besides, it allows studies on intra-speaker and inter-
speaker comparisons, because each speaker provides nearly 500 utterances of different content. 

We report the speaker verification results on this dataset in ultra-short-duration, short-duration, 

and normal-duration scenarios, respectively. 

 

4.1.1. Training Data 

 

The training data contains 248 speakers, and each speaker has almost 500 utterances.  
 

The i-vector extractor is a 2048 component GMM-UBM, which is trained on full-length 

recordings using 23-dimensional MFCC speech features.  Short duration i-vectors and ultra-short 
duration i-vectors are extracted from the first 10n frames of the test data, where n is the duration 

of recordings being considered (in ms). We only choose speakers that have more than 8 

recordings (with 3~5-second durations). 

 

4.1.2. Evaluation Data 

 

We focus on the case where both the enrollment and test recordings of a verification trial are in 
the same duration scenario. In the normal-duration scenario, 9 enrollment and 2 test utterances 

are prepared for each speaker. In the short-duration scenario, 7 enrollment and 2 test utterances 

are prepared.  In the ultra-short-duration scenario, 2 enrollment and 2 test utterances are prepared. 
The evaluation set is selected from our database, and there is no speaker overlap with the training 

set. The enrollment part contains 200 speaker models, and the test part contains 800 utterances 

from the 200 models in the enrollment set, of which 400 are for ultra-short-duration trials, and the 

rest 400 are for short-duration trials. There are 20K trials in the entire trial list, including 50% 
intra-speaker (target) trials and 50% inter-speaker (non-target) trials. 

 

4.2. Speaker Verification 

 
In this section, we present our experimental setup, as well as details related to input features, 
neural network training, and classifiers. All systems compared in this paper are presented in 

Table 1. All deep speaker embeddings systems in this paper are trained on 23-dimensional MFCC 
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features (sometimes combined with 7-dim rhythm variation features) with a frame-length of 
25ms that are mean-normalized over a sliding window of up to 3 seconds of short-duration 

snippets speech. Our experiments are conducted in three evaluation scenarios: Short-duration 

(3~5-second), Ultra-short-duration (1~3-second) and Normal-duration (1~5-second) evaluation 

recordings. 
 

4.2.1. Large-scale System 

 
The I-vector system relies on a universal background network and a total variability matrix, 

which is called i-vec. Input features are 23-dimensional MFCC with first and second-order time 

derivatives. The number of Gaussian components is set to 2048, while the dimension of the i-
vector is 600.  

 
Table 1 The configuration of our systems 

 

Network 
I-vector  

dim 

X-vector #Model 

 size #Input #TDNN layers #Neurons 

i-vec 600 23 n/a n/a 20.38M 

x-vec n/a 23 3 512 18.3M 

x-vec+asoftmax n/a 23 3 512 18.3M 

x-vec+asoftmax+rhythm n/a 30 3 512 23.15M 

student-64 n/a 30 3 64 3.45M 

student-32 n/a 30 3 32 763K 

 
The x-vec systems, x-vector+asoftmax system, and x-vec+asoftmax+rhythm system are 

described in Section 2 and Section 3.1, respectively. We adopt x-vec+asoftmax+rhythm, an x-

vector based on A-softmax and rhythm features, as the teacher network in the following multi-
task knowledge distillation experiments, since an excellent performance was reported using this 

architecture on XiaoAi-Speech. The detailed network configuration of the teacher network is 

shown in Table 1. The input acoustic features are fed into an eight-layer DNN. The first five 

layers Frame 1 to Frame 5 are constructed with a frame-level time-delay architecture. The 
statistics pooling layer aggregates over frame-level output vectors of the DNN and computes their 

mean and standard deviation. This pooling mechanism enables the DNN to produce fixed-length 

representation from variable-length speech segments. Then their mean and standard deviation are 
concatenated together and forwarded to two additional hidden layers segment 6 and segment 7. 

Finally, the system is optimized using stochastic gradient descent (SGD) using A-softmax. The N 

on the A-softmax layer corresponds to the number of training speakers. We also decayed the 
learning rate every 4 epochs. During the inference phase, speaker embeddings are extracted from 

the affine component of layer segment 6 before the nonlinearity.  Then a PLDA backend is used 

to compare pairs speaker embeddings. 

  
Table 2 The architecture of x-vec+asoftmax+rhythm. 

  

Layer Layer context Total context Input x output #Parameter 

frame1 [t-2, t+2] 5 30x512 30x5x512 

frame2 [t-2, t+2] 9 512x512 512x5x512 

frame3 [t-3, t+3] 15 512x512 512x7x512 

frame4 {t} 15 512x512 512x512 

frame5 {t} 15 512x1500 512x1500 
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stats pooling [0, T) T 1500xTx3000 0 

segment6 {0} T 3000x512 3000x512 

segment7 {0} T 512x512 512x512 

A-softmax {0} T 512xN 512xN 

 

4.2.2. Small-scale System 

 

Several different setups for highly compact student networks are investigated in our experiments. 

The most natural choice is to use a shallower x-vector. Two setups are adopted, namely student-

64 and student-32, with the number of hidden units for TDNN layers set as 64 and 32, 
respectively. Both teacher and student networks are of the same 512 speaker embedding 

dimension. During the inference phase, the student network was used to predict speaker 

embedding vectors for enrolment and test data, which was then followed by PLDA scoring, 
which is the same as the teacher network. 

 

4.3. Evaluation metric 

 
To further investigate the impact of out methods on intra- and inter-speaker verification 

separately, we use C
llr

 instead of hard decision like equal error rate (EER) to evaluate the log-

likelihood-ratio (LR) of speaker pairs. C
llr

 can evaluate the discriminant ability of the log-

likelihood ratio (LR) of the speaker pair, while EER is valid for overall correct-classification rate. 

C
llr

 is calculated as followed: 

 

 (6) 

 

As shown in Equation 6, C
llr

TAR
 is the average information loss corresponding to target trials, 

while C
llr

NON
 is the average information loss corresponding to non-target trials. C

llr
 is the sum of 

the two parts. The lower the C
llr

, the better the performance is. 

 

5. RESULT AND ANALYSIS 

 
5.1. Fusion of Rhythm Features and MFCC Feature 

 

Based on the x-vec+asoftmax+rhythm system, we optimize the weight parameter g  for feature 

fusion to minimize EER. Figure 4 shows the EER on the corresponding evaluation set under 

ultra-short duration, short duration, and normal duration scenarios, respectively. The results 

motivated us to choose g = 0.01for feature fusion, which produced the lowest EER in all 

scenarios. 
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Figure 4 Optimization of the weight factor g in feature fusion 

 

5.2. Effect on Intra- and Inter-speaker Verification 

 
As shown in Table 2, rhythm features and multi-task knowledge distillation can both improve 

intra-speaker verification (target comparisons) and inter-speaker verification (non-target 
comparisons). Although i-vec, x-vec, x-vec+asoftmax, x-vec+asoftmax-rhythm, and student-64-

TS achieve lower and lower overall error rates (EER), their effects on the target and non-target 

comparisons are different from each other. Compared with i-vec, x-vec reduces EER by 7.5% at 
the cost of non-target comparison accuracy. Compared with x-vec, x-vec+asoftmax achieves a 

4.6% EER reduction at the cost of target comparison accuracy. At the meantime, it is worth 

noting that x-vec+asoftmax+rhythm have significantly improved the target comparison, and it 

does not affect the accuracy of the non-target comparison, which is consistent with the conclusion 
in [19]. Besides, multi-task knowledge distillation makes the student-64-TS network have better 

performance in both target and non-target comparisons, with a 7.1% EER reduction. The results 

show that DNN is powerful in modeling high-dimensional speaker embedding, but under non-
discriminatory training conditions, the performance of target comparison is worse than i-vector. 

A-softmax is more strict than conventional softmax, it imposes a larger angle margin between the 

speakers, and classifies the samples into the corresponding categories. Therefore, x-vec+asoftmax 

is reasonable to harm the accuracy of the target comparison. 
 

Table 2 
C
llr

TAR

 and 
C
llr

NON

for different speaker verification networks. PLDA is the scoring  

back-end for EER. 

 

Network C
llr

TAR

 
C
llr

NON

 
EER (%) 

i-vec 9.49 0.01 18.2 

x-vec 1.64 0.16 10.7 

x-vec+asoftmax 5.14 0.02 6.1 

x-vec+asoftmax+rhythm 2.89 0.03 5.7 

student-64-TS 1.41 0.03 3.6 
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5.3. Multi-task Knowledge Distillation 
 

Table 2 EER and parameter comparison of different speaker embedding architectures. PLDA as 

the scoring back-end. TS denotes multi-task teacher-student learning. Compression ratio (CR) is 
the relative reduction rate of model size. 

 

Network TS 
EER (%) Model 

size 

Compression  

Ratio Ultra-short Short Normal 

i-vec No 19.15 13.19 15.8 20.38M - 

x-vec No 13.04 8.86 10.67 18.2M - 

x-vec+asoftmax No 8.12 4.37 6.1 18.3M - 

x-vec+asoftmax 

+rhythm 
No 7.38 3.78 5.73 23.15M - 

student-64 No 11.62 5.69 8.57 3.45M 85.1 

student-64-TS Yes 5.02 1.75 3.64 3.45M 85.1 

student-32 No 19.15 13.19 15.8 673K 97.1 

student-32-TS Yes 7.195 3.505 5.74 673K 97.1 

  
As shown in Table 3, compared with student baselines, multi-task knowledge distillation 

significantly boosts the performance of student networks, and it could obtain highly compact 

networks with better performance than large networks. X-vec+asoftmax+rhythm is the teacher 

network, while student-32 and student-64 with no knowledge distillation are two student network 
baselines. Student-32-TS can achieve competitive performance with the teacher network by using 

only 2.9% of parameters used in the teacher. Student-64-TS can achieve a 32% relative EER 

reduction by using only 14.9% of parameters used in the teacher. The more compact the student 
network, the more significant the effect of multi-task knowledge distillation. 

 

Figure 5 shows the DET test curves of different systems under normal duration conditions. 
Student-32-TS is competitive with x-vec+asoftmax+rhythm in all operating areas. 
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Figure 5 DET curve for baseline, teacher and two high compact student networks. 
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Figure 6 shows the t-SNE [30] plots corresponding to x-vec+asoftmax+rhythm, student32, and 
student-32-TS networks. The distribution of speaker embeddings in the 2D projected t-SNE space 

generally revealed speaker clusters. Eight speakers from the evaluation dataset were randomly 

selected, and for each, we use seven recordings spoken by the speaker (56 in total). The selected 

56 samples were plotted in the 2D projected t-SNE space, with colors denoting different speakers.  
 

Multi-task knowledge distillation can effectively pull intra-speaker samples closer and push inter-

speaker samples further. On the one hand, as shown in Figure 6(b) and (c), compared with the 
student-32 baseline, data points from the same speaker tend to be closer, while those from 

different speakers become more distinct. For instance, the distribution of x-vectors from speaker 

ID1013 (violet), ID1023 (blue) become denser. On the other hand, as shown in Figure 6(a) and 
(c), compared with the x-vec+asoftmax+rhythm, speaker subset clusters emerge in the student. 

Samples from ID1013 (violet), ID1023 (blue), ID1033 (lime) and ID1036 (green) formed a 

cluster while the rest formed another. Within each subset cluster, the student and teacher have a 

similar relative position of speaker clusters in the embedding space. X-vectors from speaker 
ID1016 (red) and ID1020 (magenta) are consistently projected to have proximity. These two 

points reveal a hierarchical structure of speaker embeddings, which sheds some light on the 

success of our methods.  
 

In DLKD, students and teacher networks are required to have the same embedding dimension, 

which limits the compression space of the student network. 

 
(a) x-vec+asoftmax +rhythm 

 
(b) student-32 

 
(c) student-32-TS 

 

Figure 6 T-SNE plots of 56 utterances from 8 selected speakers for different networks. 
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6. CONCLUSIONS 
 
In this paper, rhythm features are introduced to reflect the distribution of phonemes and help 

improve the performance of speaker verification, especially intra-speaker verification. And multi-

task knowledge distillation is proposed to boost the performance of the student network on both 
intra- and inter-speaker verifications. The embedding-level knowledge distribution directly 

guides the convergence of the student network. The label-level knowledge distillation transfers 

the posterior probabilities distribution of the incorrect outputs from the teacher network, which 
provides information on the similarity between speaker categories. Results show that a student 

can achieve a 32% relative EER reduction by using only 14.9% of parameters used in the teacher 

via our methods. Besides, a highly compact networks with competitive performance with the 

teacher network can also be obtained. 
  

In the future, we consider further investigating the trade-off relation between the compactness 

and performance of student networks. Besides, the impact of angular margin loss on knowledge 
distillation also deserves further experiments. 
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