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ABSTRACT

State-of-the-art face recognition systems (FRS) are vulnerable to morphing attacks, in which two

photos of different people are merged in such a way that the resulting photo resembles both people.

Such a photo could be used to apply for a passport, allowing both people to travel with the same

identity document. Research has so far focussed on developing morphing detection methods. We

suggest that it might instead be worthwhile to make face recognition systems themselves more robust

to morphing attacks. We show that deep-learning-based face recognition can be improved simply by

treating morphed images just like real images during training but also that, for significant improve-

ments, more work is needed. Furthermore, we test the performance of our FRS on morphs of a

type not seen during training. This addresses the problem of overfitting to the type of morphs used

during training, which is often overlooked in current research.
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1. Introduction

A Face Recognition System (FRS) performs identity verification by comparing two photos
and deciding whether or not the identities match. It was first shown in [1] that existing
Face Recognition Systems (FRS) were vulnerable to morphing attacks. A morph is an
image that contains facial features of two different people. In a border-crossing scenario
a criminal (C) could enlist the help of an accomplice to create a morphed photo. The
accomplice (A) could then use this photo to apply for a passport, which the criminal in
turn could use to cross borders undetected. The most-used method to create morphs is to
mark certain facial features, called landmarks, warp both images to a common geometry
and then blend the pixel values. For an overview of this morphing process see Fig. 1. It
has been shown that both FRSs and humans will often accept a morph made with this
method as a match with both contributing identities [2–4].

Recently, a platform was launched with which the performance of different morphing de-
tection algorithms can be benchmarked [5]. This benchmark and other research indicates
that existing algorithms do not perform well when tested across different datasets [6, 7].
Since researchers have so far had to create their own training datasets, their detection
methods may have been overfitted to specific characteristics of their training set. Fur-
thermore, some detection methods require large datasets for training, which means that
a large number of morphs need to be made. Since this is usually done automatically such
morphs will probably be of lower quality than hand-crafted morphs. A detection method
created by training with such data can detect low-quality but not high-quality morphs.
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Figure 1. Morphing process

There are two scenarios in which morphing detection can take place. In a differential
scenario, a second (frequently live) image of the passport holder or applicant is available
for comparison. In the second, more challenging non-differential scenario, whether or not
the photo has been morphed has to be decided based on the photo only.

We argue that there is a distinct possibility that carefully made morphs do not contain
any artifacts that would allow a morphing detection system to distinguish them from real
photos. That means we cannot rely on non-differential morphing detection to detect high-
quality morphs, which leaves us with differential morphing detection methods. In that
case we can use identity-related information to determine whether two images are of the
same person. Current face recognition systems are created and trained with the purpose
of verifying whether two photos are of the same person without taking into account the
possibility that one of them is actually a morph. Assume we have a face recognition
system (FRS) that has perfect performance on real, but not on morphed photos. When
comparing two photos X1 and X2, if X1, X2 is a genuine pair then (a sufficient amount of)
identity information in X1 is also present in X2, so the verification is successful. If X1, X2

is an impostor pair the identity information in X1 is not present in X2 and verification
is unsuccessful. If X2 is a morph and enough of the identity information in X1 is also
present in X2 the verification is successful. What the FRS does not take into account is
the possibility of there being identity information of a different person in X2. The fact
that many FRSs are vulnerable to morphing attacks supports this hypothesis. We argue
that instead of treating face recognition and morphing detection as two separate tasks,
it makes more sense to train an FRS that detects whether there are inconsistencies in
identity information. This makes the task of face verification more complicated, which
may lead to a lower face recognition performance, but will hopefully be better equipped
to deal with the possible presence of morphs.

The rest of this paper is structured as follows: in Section 2 we will discuss related work,
in Section 3 we describe our approach and in Section 4 introduce the metrics we use
to evaluate our method. In Section 5 we describe how we created our dataset, which
comprises both real and morphed photos. In Section 6 we describe our experiments and
in Section 7 present our results. We draw some conclusions and discuss future work in
Section 8.
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2. Related Work

2.1. Non-Differential Morphing Attack Detection

Several methods for non-differential morphing attack detection (MAD) have been pro-
posed. Such methods depend on finding artifacts or traces left by the morphing process to
detect morphed photos. However, if a high-quality morph does not contain such artifacts
or traces, then differential MAD is more suitable to address the problem. Therefore, we
will not discuss non-differential MAD methods here and instead refer the reader to [2, 3]
for an overview of existing methods.

2.2. Differential Morphing Attack Detection

Demorphing [8] proposes to retrieve the accomplice A’s identity by subtracting an available
live image from a suspected morph, but makes strong assumptions on which parameters
were used for morphing. It can reduce the rate of accepted morphs, but at the cost
of reducing the rate at which genuine image pairs are accepted from 99.9% to 89.2%,
depending on the parameter used for demorphing. When tested on benchmark datasets
in [5] equal error rates for the dection task (D-EER) of 8-16% are reported.

In [9] and [10] the locations of facial landmarks in a suspected morph are compared with
the landmark locations in an available reference image. The shift between the two sets
of landmark locations tends to be smaller for a pair of images with the same identity
than if one of the two images is a morph. In [9] the euclidean distance and angle of the
landmark shifts are used and a D-EER of 32.7% is recorded. In [10] the directed distances
of the landmarks shifts are used and a spectacular D-EER of 0.00% is reported. Since the
directed distances should be equivalent to using distance and angle (Cartesian vs. polar
coordinates), this may indicate that some overfitting has taken place. This method of
using landmark shifts achieves D-EERs of 33-39% when tested on benchmark datasets in
[5].

2.3. Morph Attack Detection using an existing FRS

Existing face recognition systems have also been used to detect morphs. In [11], the high-
level features of existing, deep-learning-based FRSs are used to train a Support Vector
Machine (SVM) [12]. The resulting hyperplane is used to classify images as morphs or
genuine photos. However, an SVM-based method that can separate morphs from genuine
photos probably uses morphing traces and artifacts, since these are very likely to be present
in an automatically created morphing dataset, and will still be present - if abstractly so
- in the high-level features of an FRS. Furthermore, this method suffers from the same
shortcoming, that improved MAD comes at the cost of lower genuine accept rates.

What these differential MAD methods have in common is that while they can lead to
improved morph attack detection, they at the same time cause more pairs of genuine
photos to be rejected, implying that the performance of face recognition on standard
photos would be negatively influenced. Since we did not evaluate the performance of our
method on the exact same datasets as were used in the previously mentioned publications
and because our aim is to develop an FRS that is more robust to morphing attacks, whereas
existing methods treat MAD and face recognition as two separate tasks, the results from
other publications are not directly comparable to the results published in this paper. In
practice, it might be useful for such MAD methods to be used in combination with an
FRS with improved robustness to morphing attacks.

Generally, the performance of detection methods seems to vary strongly depending on the
characteristics of the dataset [5].
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To the best of our knowledge, no one has tried to take into account the presence of morphs
during the development of an FRS.

3. Proposed System

3.1. VGG Face

The FRS we train is based on the convolutional neural network (CNN) model VGG16 that
was used for face recognition in [13]. There are other FRSs that have better performance,
but we chose to use this architecture since it is reasonably simple to retrain the last layer
of the network, resulting in a verification system with acceptable performance with which
we can perform preliminary experiments to test our hypothesis. The training method we
propose can also be applied to train other (deep-learning-based) FRSs. For our experi-
ments we resized images to 224 × 224 × 3 pixels, which is the input size for the VGG16
model. Using FRSs that use larger input sizes may lead to improved performance, since
more of the information contained in an image can be used.

We use the weights from a pre-trained model [14] that was trained as a classifier and only
retrain the last, fully connected layer. This means that we learn a projection from the
4096-dimensional output of the pre-trained model to a 64-dimensional latent space. We
train the weights W ∈ R64×4096 of this last layer using the empirical triplet loss [15]:

L(W ) =
∑

(a,p,n)∈T

max{0, α− ||xa − xn||22 + ||xa − xp||22}, (1)

where we select all possible genuine pairs (a, p) and in every training epoch extend these
to triplets (a, p, n) by randomly selecting an image n for each genuine pair such that (a, n)
is an impostor pair. T is the set of all triplets that violate the triplet constraint:

α+ ||xa − xp||22 < ||xa − xn||22, α = 0.2. (2)

The face embeddings xa, xp, xn ∈ R64 are determined by forwarding the normalised output
of the pre-trained network through the last, fully connected layer:

xi = W
f(i)

||f(i)||
, i ∈ {a, p, n}, (3)

where f(i) ∈ R4096 is the output of the pre-trained network given an input image i. We
follow the same procedure for training as in [13], and refer the reader to this publication for
more details on the training procedure. Since we use a much smaller dataset for training
we choose a lower latent space dimension of 64 in order to avoid overfitting.

4. Evaluation Metrics

This section introduces the metrics we use to measure the performance and robustness to
morphing attacks of an FRS. We estimate these values using the test and validation sets.

• the EER of the face recognition system: the error rate for which the False Non-Match
Rate (FNMR) and the False Match Rate (FMR) are equal: we call the threshold at
which this criterion holds tEER,

• the Morph Accept Rate at threshold t (MAR(t)): the proportion of morph pairs
accepted by the FRS as a match when using a threshold t, where a morph pair
consists of a morph and a reference image of one of the two identities present in the
morph,
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• the MAREER: the MAR at tEER,
• the Bona fide Presentation Classification Error Rate (BPCER(t)): the proportion of

genuine pairs that are not accepted by the FRS when using a threshold t,
• the Attack Presentation Classification Error Rate (APCER(t)): the proportion of

(morphing) attacks that are considered a match by the FRS when using a threshold t,
• the EER of our differential morph attack detection (D-EER): i.e. the error rate at

the threshold t for which APCER(t) = BPCER(t),
• BPCER10: the lowest BPCER(t) under the condition that APCER(t) ≤ 10%,
• BPCER20: the lowest BPCER(t) under the condition that APCER(t) ≤ 5%,
• BPCER100: the lowest BPCER(t) under the condition that APCER(t) ≤ 1%,

When using an existing FRS, the simplest way to create an MAD method would be to
simply lower the decision threshold (for an FRS that uses dissimilarity scores). This
provides a baseline with which the performance of other MAD methods that use features
of FRSs can be compared. However, such a threshold would not be useful in practice since
too many genuine claims would be rejected. Since there is often a trade-off between the
performance of face verification and morphing detection [11], we display our results by
plotting EER against MAREER. The Relative Morph Match Rate (RMMR) [16] attempts
to describe something similar, but this value is rarely reported.

5. Creation of Morphing Dataset

We use the FRGC-dataset [17] and select the portrait-style photos, resulting in 21,772
images of 583 different identities, which we split into a training and a testing set, see
Table 1. We align the images using five landmarks detected with [18] and align the faces
using [19]. We crop the images using a face detector [18] and resize them to square images
of 224x224 pixels.

Table 1. Our dataset.

# real IDs # real imgs # morph IDs # morph imgs

Training 514 19,683 434 30,924

Testing 69 2,089 99 4,900

Table 2. Validation sets.

# real IDs # real imgs # morph IDs # morph imgs

PUT 100 2,195 83 3,608

AMSL 102 204 1,140 2,175

The morphing method we use is based on the most-used method that consists of the
following steps:

1. Landmark detection,
2. Triangulation,
3. Warping,
4. Blending,
5. Splicing (slightly different from the Poisson blending [20] that is usually used).

The morphing procedure in 1)-4) has been explained in several existing publications, to
which we refer the reader for more details [1–3]. In step 5) we use a mask image to
splice the inside of the morphed face into the background of one of the two original faces
used to create the morph. We create this mask by using the convex hull defined by the
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Accomplice Full Morph Criminal

Mask

Figure 2. Splicing

outermost facial landmarks (on the jaw, chin and forehead). We ensure a smooth transition
between the morph and the background on the forehead by blurring the mask in a vertical
direction. We use a gaussian blur with kernel size 7x7 on the whole mask to prevent any
sharp transitions, and adjust the pixel values inside the convex hull in order to ensure
a natural-looking skin colour. The pixel at location (i, j), 0 ≤ i, j ≤ 223 in the spliced
morph M is

M(i, j) = Im1(i, j)(1−Mask(i, j)) +

(Mfull(i, j)− µM + µ1)Mask(i, j),
(4)

where Im1 is the background image into which the full morph is spliced, Mask ∈ [0, 1] and
Mfull is the full morph.

µM =

∑
i,j Mfull(i, j) ·Mask(i, j)∑

i,j Mask(i, j)
(5)

and

µ1 =

∑
i,j Im1(i, j) ·Mask(i, j)∑

i,j Mask(i, j)
. (6)

See Fig. 2 for an example of the splicing step. We select pairs of identities for morphing
randomly from within the training and testing set respectively, ensuring that there is no
overlap in identities in the training and testing set, see Table 1. Fig. 3 shows that the
majority of our morphs are accepted by two existing state of the art FRSs [18,21].

5.1. Validation sets

We use two different datasets to validate our results. The first is a dataset that we created
using the same pipeline as described above, but using a different dataset. For this we use
the PUT Face Database [22], where we only select the subset of frontal images. For each
identity id1 in this dataset we determine which of the remaining identities is most similar
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Figure 3. Evaluation of our morphed and genuine photos using two existing FRSs. The
blue histograms estimate the probability density of genuine scores, the red impostor
scores, and the green morph scores. Note that the dlib FRS uses dissimilarity scores

whereas FaceVacs uses similarity scores. The vertical lines represent the decision
thresholds recommended for these systems.

to it, which is the identity id2 for which∥∥∥ 1

Nid1

Nid1∑
i=1

xi −
1

Nid2

Nid2∑
i=1

yi

∥∥∥
2

(7)

is minimised, where xi, i ∈ 1, ..., N1 are all images of id1 and yi, i ∈ 1, ..., N2 all images of
the second, to be determined, identity. The embeddings xi, yj are computed by forwarding
each image through our FRS that was trained without morphs (see Section 6.1.). We
remove any duplicate pairs of identities. Since there is more pose variation in the PUT
dataset, when selecting image pairs for morphing we select images that have similar poses.

The second validation set we use is the “AMSL Face Morph Image Data Set” dataset
introduced in [23]. These morphs were created using images from [24] and [25].

Table 3. Training pairs.

Types of pairs in training set # Pairs

Genuine pairs 592,650

Genuine morph pairs 496,494

Augmented genuine pairs 2,056,974

6. Experiments

6.1. Training without morphs

We follow the same procedure for training as in [13]. This means that at the beginning
of every epoch a number of triplets (592,650, since this is the number of genuine pairs) is
randomly generated by extending each genuine pair to a triplet as described in 3.1. We
only train with the subset of triplets that violate the triplet constraint (Eq. 2). If a triplet
in this subset still violates the triplet constraint at the end of an epoch, we store it and
add it to the subset of triplets in the next epoch. We repeat this for a total of 200 training
epochs.

6.2. Training with morphs

Since we use an automated pipeline to create our morphs there are some artifacts present
in the morphed images. Such artifacts can be caused by badly selected landmarks, or by
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Photo 1 Augmented
Genuine Photo 2

Figure 4. An example of an augmented genuine, i.e. a morph of two different photos of
the same person.

different expressions, see for example the mouth in Fig. 2. The morphing process also
leaves some other traces, including a smoothing effect. This is caused by interpolation in
the warping step, which is necessary to determine the pixel values of the warped images,
and due to the blending of the two images in the splicing step. Since it is important that
the FRS does not learn to separate genuine and morphed images based on such effects,
and it would be very challenging to create a morphing dataset without them, instead we
propose to introduce the same type of artifacts and traces in the genuine images. This
can be done by creating augmented genuine photos. These are created in exactly the same
way as morphs, but by combining two different images of the same person. See Fig. 4
for an example of an augmented genuine. (This technique of creating augmented genuine
photos could be used as a data augmentation method in other applications, for example
when there are not many images of one identity available.) See Table 3 for the number of
available pairs of each type.

Table 4. Possible triplet combinations.

a p n

id1 id1 id2
id1 id1 id1 + id2
id1 + id2 id1 + id2 id3
id1 + id2 id1 + id2 id1 + id3
id1 + id1 id1 id2

When training with morphs, different triplet combinations (a, p, n) are possible. The first
possibility is that the pair (a, p) can comprise two images of the same person, just as
when training without morphs. A second is that either a or p is an augmented genuine
(of the same identity), in which case we call the pair an augmented genuine pair. The
third possibility is that (a, p) consists of two morph images, both created using the same
two identities. We call such pairs genuine morph pairs. In all three cases we extend the
pair to a triplet by either selecting a third image of a different identity (with p = 0.5),
or by selecting a morph such that one of the two identities in the morph matches that of
the genuine pair. Since there are many more triplets selected at the beginning of every
epoch, this means that at a fixed batch size more updates are performed in each epoch.
Therefore, when we train with morphs we only train for 100 epochs. The different possible
triplet combinations are summarised in Table 4, where id1 + id2 describes the identity of
a morph and id1 + id1 that of an augmented genuine.

7. Results

Fig. 5 shows that the Equal Error Rate (EER) of an FRS decreases during both training
scenarios. However, when training without morphs, after a number of updates the pro-
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Figure 5. Performance of an FRS trained without morphs and an FRS trained with
morphs and augmented genuine pairs. Results are estimated using our test set.

Performance is measured using EER and MAREER, showing that while during training
the EER decreases in both scenarios, when training without morphs this is at the cost of

robustness against morphing attacks.

portion of morph pairs accepted by the FRS increases. When training with morphs, the
EER also decreases, but seemingly not at the cost of accepting more morph pairs.

Table 5. Performance on test set.

Training: without morphs augmented&morphs
(200 epochs) (100 epochs)

EER (of the FRS) 0.55% 0.57%

MAREER 30.20% 20.54%

D-EER 6.70% 5.61%

BPCER10 4.28% 2.41%

BPCER20 9.38% 6.48%

BPCER100 28.09% 22.50%

In a practical verification scenario, such as border control, the thresholds at which the error
rates BPCER10, BPCER20 and BPCER100 are measured would not be adopted, since this
would lead to the rejection of too many genuine pairs, but we report these metrics in order
to allow our results to be compared to other research.

When comparing the performance on the test set to that on the PUT validation set, we
no longer observe an improvement, in fact the EER when training without morphs is
lower than when training with morphs while the proportions of accepted morph pairs are
similar. One possible reason for this decrease in performance is that the pose variation in
the PUT dataset is larger, and the validation set therefore also includes morphed images
with stronger poses than were present in the training set. Since the FRS did not see
such morphs during training it cannot classify them well. Another possible explanation is
that the FRS has not learned to distinguish morphs from real images based on identity
information, but has e.g. learned to recognise certain artifacts present in morphed images.
The fact that the error rates are generally larger than on the test set indicates that this is a
challenging dataset for the FRS, whether it was trained with or without morphs. Further
experiments are necessary to confirm whether the lower performance on the PUT dataset
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Table 6. Performance on validation sets.

Training: without morphs augmented & morphs
PUT: (200 epochs) (100 epochs)

EER (of the FRS) 0.69% 0.99%

MAREER 83.65% 84.62%

D-EER 15.68% 15.66%

BPCER10 20.28% 20.29%

BPCER20 27.48% 27.52%

BPCER100 40.72% 42.45%

ASML:

EER (of the FRS) 0.00% 0.00%

MAREER 24.94% 16.48%

D-EER 5.86% 4.97%

BPCER10 4.90% 4.90%

BPCER20 6.86% 4.90%

BPCER100 15.69% 14.71%

is due to the higher pose variation.

The images in the ASML dataset are quite different from the images in the training set,
since the image resolution is higher and Poisson blending was used to create the spliced
morphs. In spite of these differences, the FRS trained with morphs has better performance
than the FRS trained without morphs. This improvement is promising, since it suggests
that the FRS has indeed learned to differentiate between genuine and morph images based
on identity rather than on morphing traces or artifacts.

8. Conclusion & Future Work

In this work we observed a modest improvement in robustness to morphing attacks after
training an FRS with morphed photos. However, even a modest improvement presents an
improvement on existing MAD methods, since often better detection of morphs is at the
cost of decreasing performance of face recognition on normal images. We only trained the
last layer of the VGG16 convolutional neural network, so more significant improvements
may be achieved by training more layers of the model. Training with a larger dataset, or
using data augmentation techniques are further ways to achieve better performance. Our
results suggest that there may be merit to our training method, but they also underline
the need for morphing databases that are more varied with respect to factors such as
resolution, pose and lighting, but also variation in morphing algorithms in order to better
understand which characteristics of a morphed image cause it to be challenging to classify.

Another advantage of using our method is that existing data can be used to create morphs
or augmented genuines for training, which could potentially improve the performance of
FRSs on normal datasets without needing to collect new data.

Finally, it is of the utmost importance that results are not only tested on types of morphs
present in the training set. As we showed, these results can vary strongly when tested on
different datasets.
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