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ABSTRACT 
 
High-dimensional of image data is an obstacle for clustering. One of methods to solve it is 

feature representation learning. However, if the image is distorted or suffers from the influence 
of noise, the extraction of effective features may be difficult. In this paper, an end-to-end feature 

learning model is proposed to extract denoising low-dimensional representations from distorted 

images, and these denoising features are evaluated by comparing with several feature 

representation methods in clustering task. First, some related works about classical feature 

learning are introduced. Then the architecture and working mechanism of denoising feature 

learning model are presented. As the structural characteristics of this model, it can obtain 

essential information from image to decrease reconstruction error. When facing with corrupted 

data, it also runs a robust clustering result. Finally, compared to other unsupervised feature 

learning methods, extensive experiments demonstrate that the obtained feature representations 

by proposed model run a competitive clustering performance. The low-dimensional 

representations can replace the original datasets primely. 
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1. INTRODUCTION  
 
In machine learning and data analysis, difficulties in information processing are caused by large 

dimensions. Meanwhile, if image datasets are distorted or suffer from noise, the extraction of 

effective features becomes more difficult. Consequently, learning reusable feature representations 

from a large number of unlabelled datasets has become a research hotspot. High-dimensional 
images always need a pre-processing such as dimensionality reduction [1]. Feature representation 

learning is an effective method [2]. Feature learning can be categorized into supervised based and 

unsupervised based. Supervised based methods have reached remarkable performance. Linear 
discriminant analysis (LDA) [3] makes the distance between different types of samples larger, 

and the distance between similar samples smaller. Locality sensitive discriminant analysis 

(LSDA) [4] belongs to manifold learning algorithm. Its main idea is to maximize the edge of 
different classes in each local region. However, as the increasing of data and unmarked label, 

supervised based methods may have an impact on its accuracy.  

 

The emergence of unsupervised feature learning is better solved ‘curse of dimensionality’ as well 
as unmarked labels. Unsupervised feature learning is classified into two parts: linear based and 

non-linear based. Principal component analysis (PCA) is a statistical method [5]. It uses 

orthogonal transformation to convert a set of variables that may be related into a set of linearly 
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uncorrelated variables. The converted set of variables is called the principal component. Locality 
preserving projections (LPP) builds a graph on the data set. This graph contains the information 

of the node’s neighbours [6]. The algorithm mainly finds an optimal linear approximation when 

the high-dimensional data depends on the embedding of the low-dimensional manifold in the 

surrounding space. PCA and LPP are two linear feature learning algorithms. Neighbourhood 
preserving embedding selects neighbours to reconstruct linear weights for each point. The core of 

isometric feature mapping (Isomap) is to find and utilize the characteristics of manifold space, 

introduce geodesic distance and propose corresponding distance calculation [7]. Locally linear 
embedding (LLE) is a new feature learning algorithm for non-linear data [8]. It can keep the 

original manifold structure after dimensionality reduction as far as possible. Isometric projection 

(IsoP) discovers the in-trinsic geometrical structure of data set [9].  
 

In recent years, auto-encoder (AE) and its family are proposed to realize dimensionality reduction 

and feature learning. Auto-encoder is an unsupervised learning algorithm (the training example is 

not marked), which uses back propagation algorithm and makes the target value equal to the 
input value [10]. It is a neural network which contains three layers. The dimension of hidden 

layer is much smaller than input layer. Sparse auto-encoder (SAE) limits the number of hidden 

units to learn more useful features [11]. A neuron is active if its output value is close to 1, 
otherwise it is not active if its output value is close to 0. Variational auto-encoder (VAE) is an 

important generation model. It proposes a gradient estimation called stochastic gradient variable 

bayes [12]. The core of adversarial auto-encoder (AAE) is to use a generator and a discriminator 
for adversary learning [13]. It’s a combination of VAE and adversarial network.  

 

The above methods run a great performance on feature extraction. However, when facing with 

distorted images, existing unsupervised feature learning methods may be affected. In this paper, 
an end-to-end feature learning model is proposed to extract denoising low-dimensional 

representations from distorted image datasets. These denoising features perform well in 

unsupervised clustering task. As the structural characteristics of this model, it can obtain essential 
information from image to decrease reconstruction error. Facing corrupted data, it also runs a 

better result. For evaluating their performance, these features are sent into 𝑘-means clustering 

[14]. Three evaluation metrics are selected for comparison including clustering accuracy (ACC), 

normalized mutual information (NMI) and adjusted rand index (ARI).  
 

The following parts of this paper are arranged as follows. Some works related to classical feature 

learning are showed in Section 2. In Section 3, the structure and working mechanism of denoising 
feature learning model are presented. In Section 4, extensive experiments on eight standard 

datasets illustrate the effectiveness of presented model. Eventually, this paper is concluded in 

Section 5.  
 

2. RELATED WORKS  
 

In this section, we introduce several classical feature learning algorithms which are classified into 

two kinds: unsupervised feature learning and supervised feature learning.  
 

2.1. Unsupervised Feature Learning  
 
The unsupervised feature learning algorithms are categorized into two types: linear and non-

linear. The core of linear feature learning algorithms is to obtain a linear mapping relation. 

Principal component analysis and isometric projection are commonly used linear feature learning 
algorithms. As for non-linear datasets, linear feature learning algorithms probably meet some 
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problems. Neighbourhood preserving embedding [15] and isometric feature mapping are two 
famous non-linear feature learning algorithms.  

 

2.1.1. Isometric Projection  

 
Isometric projection is a linear feature learning algorithm. Nevertheless, isometric projection can 

handle more complex datasets such as manifold data [16] which is embedded in high-dimensional 

space. Given a dataset 𝑋 ∈ ℝ𝑑×𝑛 , isometric projection finds a mapping function 𝑓 that makes 𝑦𝑖 
= 𝑓(𝑥𝑖) where {𝑦𝑖 }𝑖=1 𝑛 ∈ ℝ𝑘 . Isometric projection defines 𝑑𝑀 the geodesic distance [17] 

measure on 𝑀 which is a non-linear manifold embedded in ℝ𝑑 and 𝑑𝐸 the standard Euclidean 

distance. Then optimization objective function is formalized as follows  

 

arg min
𝑓

∑ (𝑑𝑀(𝑥𝑖 , 𝑥𝑗) − 𝑑𝐸(𝑓(𝑥𝑖), 𝑓(𝑥𝑗)))2                  
𝑖,𝑗 (1) 

 

where the mapping function 𝑓 is to let Euclidean distances can offer an effective approximation 

to the geodesic distances on 𝑀.  
 

2.1.2. Isometric Feature Mapping  

 
Isometric feature mapping is a kind of manifold learning [18] method which is used in feature 

learning of non-linear data. Isomap algorithm has three steps. First step confirms neighbourhood 

for each point. There are two ways: 𝑘 nearest neighbours (𝑘-Isomap) and all points in radius ϵ 

(ϵIsomap). 𝑑(𝑥𝑖 , 𝑥𝑗) represents distance in input space, such that we obtain a weighted graph 𝐺. 

Second, if 𝑥𝑖 and 𝑥𝑗 are linked by an edge, initialize shortest path distances 𝑑𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑑(𝑥𝑖 ,

𝑥𝑗) or else 𝑑𝐺  (𝑥𝑖 , 𝑥𝑗) = ∞. Then 𝑑𝐺(𝑥𝑖 , 𝑥𝑗) is constantly replaced by min{𝑑𝐺(𝑥𝑖 , 𝑥𝑗),

𝑑𝐺(𝑥𝑖 , 𝑥𝑝) + 𝑑𝐺(𝑥𝑝, 𝑥𝑗)} , 𝑝 = 1, 2, … , 𝑁. 𝑁 is the number of whole points. Afterwards Isomap 

creates a matrix 𝐷𝐺 that consists of the shortest path distances. In the finally step, MDS is applied 

in 𝐷𝐺 . Consider the 𝑘 -dimensional Euclidean space 𝑌 that preserves most information of 

manifolds intrinsic geometry, 𝐷𝑌 matrix is composed of Euclidean distances {𝑑𝑌(𝑖,   𝑗) =
‖𝑦𝑖 − 𝑦𝑗‖}. Then the cost function is denoted as  

 

𝐸 = ‖𝛾(𝐷𝐺 ) − 𝛾(𝐷𝑌)‖𝐿 2      (2) 
 

Where 𝛾 indicates an operator that converts distances to inner products.  

 

2.1.3. Principal Component  

 

Analysis Principal component analysis is a statistical method. It uses orthogonal transformation 

to convert a set of variables that may be related into a set of linearly uncorrelated variables. The 
converted set of variables is named the principal component. Consider an input image 

dataset 𝑋 = [𝑥1, … , 𝑥𝑛], we obtain its normalized matrix 𝑋′. Covariance matrix 𝐶 can be 

presented as follows  
 

𝐶 =
1

𝑛
𝑋′𝑋′𝑇

            (3) 

 

Then we calculate the eigen values and eigenvectors about covariance matrix 𝐶. After that, 𝑘 

eigenvectors corresponding to 𝑘 largest eigen values are selected. These eigenvectors are utilized 

to construct the projection matrix 𝑊 which is ordered by eigen values descend. Finally, low 

dimensional feature representations 𝑌 ∈ ℝ𝑘×𝑛 are formalized by: 𝑌 = 𝑊𝑋. 
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2.2. Supervised Feature Learning  
 

Supervised feature learning algorithms require sufficient labels, nevertheless, they perform a 

commendable result. In some cases, supervised feature learning algorithms can be improved into 
semi-supervised and then significantly reduce the need for labels. In this section, we mainly 

introduce supervised feature learning algorithms linear discriminant analysis, locality sensitive 

discriminant analysis and semi-supervised algorithm stacked label consistent auto-encoder 
(SLCA).  

 

2.2.1. Linear Discriminant  

 
Analysis As a classical algorithm in pattern recognition, the basic idea of linear discriminant 

analysis is to project high-dimensional pattern samples into the optimal discriminant vector 

space. Given a dataset{𝑥1, … , 𝑥𝑛} ∈ ℝ𝑑,{𝑦1, … , 𝑦𝑛} ∈ ℝ𝑘 (𝑘 ≪ 𝑑), attempt to find mapping 

matrix 𝐴 = (𝑎1, … , 𝑎𝑘) ∈ ℝ𝑑×𝑘 such that 𝑦𝑖 = 𝐴𝑇𝑥𝑖. Suppose all samples are sorted into 𝑐 

classes. The objective function is denoted as follows  
 

𝑎𝑜𝑝𝑡 = arg max
𝑎

𝑎𝑇𝑆𝑏𝑎

𝑎𝑇𝑆𝑤𝑎 
         (4) 

 

𝑆𝑏 = ∑ 𝑚𝑖(𝑢𝑖 − 𝑢)(𝑢𝑖 − 𝑢)𝑇𝑐
𝑖=1       (5) 

 

𝑆𝑤 = ∑ (∑ (𝑥𝑗
𝑖 − 𝑢𝑖)(𝑥𝑗

𝑖 − 𝑢𝑖)
𝑇𝑚𝑖

𝑗=1 )𝑐
𝑖=1      (6) 

 

where 𝑆𝑤 is within-class scatter matrix while 𝑆𝑏 is between-class scatter matrix. 𝑢 means the 

total sample mean vector and 𝑚𝑖 is the number of data points in 𝑖-th class. 𝑢𝑖 represents the 

average vector of 𝑖-th class. The eigenvectors related to the largest eigen values constitute the 

basic functions of LDA:  
 

𝑆𝑏𝑎 = 𝜆𝑆𝑤𝑎                  (7) 
 

the aim of LDA is to preserve global class relationship between sample points. And as a 

classification, it is hoped that the coupling degree between classes is low and the degree of 

aggregation within classes is high.  
 

2.2.2. Locality Sensitive Discriminant  

 

Analysis Locality sensitive discriminant analysis is a popular data-analytic tool which can 

discover the local manifold structure. Local structure is more important if lacking of sufficient 

training samples. LSDA defines a projection by finding the local manifold structure and the 

projection maximizes the margin between sample points. Given  𝑛  data points {𝑥1, … , 𝑥𝑛} ∈

ℝ𝑑, denote 𝑁(𝑥𝑖) = {𝑥𝑖
1 , … , 𝑥𝑖

𝑘} the 𝑘 nearest neighbors of 𝑥𝑖  and 𝑙(𝑥𝑖) the class label of 𝑥𝑖.For 

each data point, 𝑁(𝑥𝑖) is divided into two subsets  𝑁𝑤(𝑥𝑖)  and 𝑁𝑏(𝑥𝑖). 𝑁𝑤(𝑥𝑖) indicates the 

neighbours sharing the same label while 𝑁𝑏(𝑥𝑖) means the neighbours owning different labels 

 

𝑁𝑤(𝑥𝑖) = {𝑥𝑖
𝑗|𝑙(𝑥𝑖

𝑗) = 𝑙(𝑥𝑖), 1 ≤ 𝑗 ≤ 𝑘} 

 

𝑁𝑏(𝑥𝑖) = {𝑥𝑖
𝑗|𝑙(𝑥𝑖

𝑗) ≠ 𝑙(𝑥𝑖), 1 ≤ 𝑗 ≤ 𝑘}       (8) 
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It’s obvious that 𝑁𝑤(𝑥𝑖) ∩ 𝑁𝑏(𝑥𝑖) = ∅ and 𝑁𝑤(𝑥𝑖) ∪ 𝑁𝑏(𝑥𝑖) = 𝑁(𝑥𝑖).Then the weight matrices 

are defined as 𝑊𝑤,𝑖𝑗 = 1 if 𝑥𝑖 ∈ 𝑁𝑏(𝑥𝑗) or 𝑥𝑗 ∈ 𝑁𝑏(𝑥𝑖). Let  y = (𝑦1, … , 𝑦𝑚)𝑇 be a map, 

theobjective functions are formalized as 
 

min
𝑊

∑ (𝑦𝑖 − 𝑦𝑗)2
𝑖𝑗 𝑊𝑤,𝑖𝑗        (9) 

 

max
𝑊

∑ (𝑦𝑖 − 𝑦𝑗)2
𝑖𝑗 𝑊𝑏,𝑖𝑗         (10) 

 

The objective function (9) attempts to ensure that 𝑦𝑖 and 𝑦𝑗 are close while 𝑥𝑖  and 𝑥𝑗 are close and 

own same label.Maximizing (10) is to ensure that 𝑦𝑖  and 𝑦𝑗 are far apart if 𝑥𝑖  and 𝑥𝑗  are close and 

have different labels. 
 

2.2.3. Stacked Label Consistent Auto-encoder  

 
Stacked label consistent auto-encoder is a semi-supervised method which combines 

reconstruction and classification [19]. Its architecture is consist of two-layer stacked auto-

encoder. Stacked label consistent auto-encoder aims to create a linear map between innermost 
layer and class labels which constitutes the class label consistency penalty. The optimization 

objective function is presented as  
 

min
𝑊1,𝑊2,𝑊1

′,𝑊2
′,𝐷

‖𝑋 − 𝑊1
′∅(𝑊2

′∅(𝑊2∅(𝑊1𝑋)))‖𝐹
2 + λ‖𝐿 − 𝐷∅(𝑊2∅(𝑊1𝑋))‖𝐹

2          (11) 

 

Here, 𝑋 is the input data matrix, 𝐷 the linear map and 𝐿 the class labels. 𝑊𝑖 and 𝑊𝑖 ′ represent 

the weight between layers. Existing backpropagation techniques can’t learn this architecture 
because there are two outputs. Stacked label consistent auto-encoder solves this problem by the 

Split Bregman technique. Formulation (11) requires all input samples have corresponding class 

labels. However, it is difficult to gain all labels and semi-supervision method is allowed. This 
leads to  
 

min
𝑊1,𝑊2,𝑊1

′,𝑊2
′,𝐷

‖𝑋 − 𝑊1
′∅(𝑊2

′∅(𝑊2∅(𝑊1𝑋)))‖𝐹
2 + λ‖𝐿 − 𝐷∅(𝑊2∅(𝑊1𝑋𝑆))‖𝐹

2             (12) 

 

where the training data 𝑋 = [𝑋𝑈|𝑋𝑆]and the subscripts denote unsupervised or supervised. 

  

3. UNSUPERVISED DENOISING FEATURE LEARNING FOR DISTORTED 

IMAGE  
 

Facing with distorted images, existing unsupervised feature learning methods may be not 

robust. For solving unsupervised clustering task of distorted images, an end-to-end 

feature learning model is presented to extract denoising low-dimensional representations. 

As the model is based on auto-encoder, next we introduce the structure of auto-encoder. 

Auto-encoder is a neural network which uses back propagation. Consider an input 

image 𝑋 ∈ ℝ𝑚×𝑛.  Auto-encoder aims to reconstruct a matrix 𝑋′ which is similar to input data. In 

this process, auto-encoder network makes a hidden representation 𝑌 ∈ ℝ𝑑×𝑛 from 𝑋 (𝑑 ≪ m). 
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Figure 1.  The structure of auto-encoder neural network 

 

As demonstrated in Figure 1, the structure of auto-encoder is split into three parts: input 

layer, hidden layer and output layer. The process of encoder is denoted as 𝑦 = 𝑓(𝑥)and 

𝑥′ = 𝑔(𝑦)means decoder. The optimization objective function of auto-encoder is 

represented as 

 

min
𝑊,𝑏

Θ(𝑊, 𝑏) = ∑ ‖𝑥𝑖 − 𝑔(𝑓(𝑥𝑖))‖2
2𝑛

𝑖=1                (13) 

 

where 𝑊 and 𝑏 mean the weight and the bias of neural network. Predefined activation 

function usually uses sigmoid function 𝑆(𝑥) =
1

1+𝑒−𝑥. 

 

If input datasets are distorted or suffer from noise, the features obtained by auto-encoder may be 
affected. Denoising feature learning model aims to enhance the robustness of feature. It is 

capable of reconstructing clean data from distorted data. Sometimes the reconstructed images 

could obtain a better performance than original images. Meanwhile it reduces the risk of over-
fitting. 

 

 
 

Figure 2.  The framework of proposed model 

 

The structure of proposed model is showed in Figure 2. Model accepts distorted data as 

input and output a clean data. Consider an original image dataset 𝑋 = [𝑥1, … , 𝑥𝑛] ∈
ℝ𝑚×𝑛. As the influence of distortion or noise, corrupted dataset 𝑋 ̂is formed. In the 

training process, corrupted dataset can besimulated by adding random zero into input 

data. Denoising low-dimensional representation is denoted as 𝑌 ∈ ℝ𝑑×𝑛.Finally, the 

reconstructed data 𝑋′ can be presented as 

 

𝑌 = 𝑓𝑊,𝑏(�̂�) = 𝛼(𝑊(1)�̂� + 𝑏(1))        (14) 

 

𝑋′ = 𝑔𝑊,𝑏(𝑌) = 𝛼(𝑊(2)𝑌 + 𝑏(2)) = 𝛼(𝑊(2)𝛼(𝑊(1)�̂� + 𝑏(1)) + 𝑏(2))       (15) 
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where 𝛼 means activation function. Ordinarily activation function is using logistic 

sigmoid function 𝛼(𝑥) =
1

1+𝑒−𝑥. Each layer is defined to share the same network 

parameters. As a consequence, the weight 𝑊(1) = 𝑊(2) = 𝑊 and bias 𝑏 =

[𝑏(1);  𝑏(2)]. 𝑊 is a𝑑 × 𝑚 matrix and 𝑏 is a𝑛-dimensional vector. The optimization 

objective function of model is presented as 

 

min
𝑊,𝑏

Θ(𝑊, 𝑏) = 𝐿(𝑋, 𝑋′) = ∑ 𝐿(𝑥𝑖, 𝑥𝑖
′)𝑛

𝑖=1 = ∑ ‖𝑥𝑖 − 𝑔(𝑓(𝑥�̂�))‖2              
2𝑛

𝑖=1 (16) 

 

where 𝐿 is a cross-entropy loss function. The parameters of model network are denoted 

as 𝜃 = {𝑊, 𝑏}.They are constantly renovated via iterative descent of 𝐿. The detailed steps 

of denoising feature learning model are summarized as Algorithm 1. 
 

4. EXPERIMENTAL ANALYSIS  
 

In experiment stage, first we introduce eight public image databases. Then three popular 
clustering evaluation metrics and their working principles are demonstrated in the second section. 

Except presented model, seven common dimensional reduction algorithms are used to obtain 

feature representations. Experimental results on eight image datasets are recorded in three tables. 

 

Algorithm 1 Algorithm for presented model 

Input: Original data 𝑿 = {𝒙𝒊}𝒊=𝟏
𝒏 in ℝ𝒎, the dimension of hidden layer 𝒅 and 

learning rate 𝛔. 

Output: Low-dimensional feature representation 𝒀 ∈ ℝ𝒅×𝒏. 

1: Generate corrupted data �̂� = {�̂�𝒊}𝒊=𝟏
𝒏 ; 

2: Initialize weight matrix 𝑾(𝟏) ∈ ℝ𝒅×𝒎, bias vector 𝒃(𝟏)and choose an 

activation function α. 

3: repeat 

4:     foreach point �̂�𝒊(𝒊 = 𝟏, … , 𝒏 )do 

5:       Compute 𝒚𝒊by Formula (14); 

6:       Utilize Formula (15) to obtain  𝒙𝒊
′; 

7:       Update 𝑾and 𝒃by the following Formula 𝑾(𝒊+𝟏) ← 𝑾(𝒊) −

𝛂
𝝏

𝝏𝑾(𝒊) 𝚯(𝜽)and 𝒃(𝒊+𝟏) ← 𝒃(𝒊) − 𝛂
𝝏

𝝏𝒃(𝒊) 𝚯(𝜽)with gradient descent method; 

8:     end for 

9:until convergence 

10:return𝒀. 

 

4.1. Data Sets  
 

In this section, we will introduce eight public standard datasets. These image datasets are 
Chars74K, USPS, Yale-B, COIL-20, ORL, CIFAR-10, Fashion-MNIST, SMSHP. The details of 

them are given in Table I. Specific description of eight image datasets are showed below.  

 
The Chars74K dataset [20] contains two parts: English and Kannada. English symbols have three 

kinds. First kind contains 7705 characters come from natural images. Second one has 3410 hand 

drawn characters which use a tablet PC. The last one has 62992 synthesised characters which 

originate from computer fonts. This dataset is divided into 62 classes (a-z, A-Z, 0-9) and the pixel 
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size of each image is 32*32. We select a subset of Chars74K dataset. It has 44,044 training 
images and 8788 test images with 52 classes (a-z, A-Z).  

 

USPS is a handwritten digit image dataset [21]. It owns 9298 handwritten digit images in total. 

Size of each image is 16*16. USPS is divided into two parts: 7291 training samples and 2007 test 
samples. The two subsets contain 10 different categories. Label ‘1’ means digit 1 and label ‘0’ 

represents digit 10.  

 
The extended Yale Face Database B (YaleB) [22] is a face image database. YaleB includes 38 

individuals and each individual has 64 images. We resize these image into 32*32 pixels. YaleB is 

divided to two subsets. Training one has 1928 samples and test one has 486 samples. They 
contain 38 different classes.  

 

Columbia University Image Library (COIL-20) is an object image dataset. It is gray-scale. 

COIL20 has 20 objects and each object owns 72 images. They are taken from different angles. 
The size of these image is 32*32 pixels. COIL-20 contains 1440 samples. Each sample is 

represented by a 1024-dimensional vector. We divide the dataset into two subsets. First has 1140 

training examples and second owns 300 test examples.  
 

Olivetti Research Laboratory (ORL) [23] is a face image dataset. It contains 40 subjects with 

different ages, sexes and races. There are 10 images in each subject. ORL was made at different 
times, varying the lighting, facial details (glasses / no glasses) and expressions (smiling / not 

smiling, open / closed eyes). Each image is resized to 1024-dimensional vector. The dataset has 

40 classes in all.  

 
Cifar-10 is a standard color image dataset. It is made up of 60000 images which originate from a 

larger scale dataset. Cifar-10 contains 10 classes (cat, dog, automobile, bird, airplane, deer, ship, 

frog, horse, truck). There are 6000 images in each class. The size of image is 32*32. It is split 
into two subsets. Training samples have 1928 images and test samples own 486 images. They 

contain 38 different classes. 

  

Fashion-MNIST is a clothing image dataset. It contains 10 classes (bag, coat, trouser, shirt, 
sandal, T-shirt, dress, pullover, sneaker, ankle boot). Fashion-MNIST includes 60,000 training 

samples and 10,000 testing samples. The size of each image is 28*28 pixels. Each sample is 

represented as a 784-dimensional feature vector.  
 

SMSHP (Sebastien Marcel Static Hand Posture) is a hand-posture image dataset [24]. It consists 

of 5531 images. SMSHP is divided into 6 different types (point, five, v, a, b, c). For simplicity, 
the size of these hand posture images is denoted as 32*32 pixels. They are split into two subsets. 

First one has training images and second one owns 1106 test images. Each example is unified as 

a 1,024-dimensional feature vector.  
 

Table 1. A brief description of the tested datasets. 

 
ID datasets # samples # features # classes 

1 Chars74K 52832 1024 52 

2 COIL-20 1440 1024 20 

3 USPS 9298 256 10 

4 ORL 400 1024 40 

5 YaleB 2414 1024 38 

6 Cifar-10 60000 3072 10 

7 SMSHP 5531 1024 6 

8 Fashion-MNIST 70000 784 10 
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4.2. Parameter Setting  
 

In this paper, learning rate of all methods is set as 0.01. For an objective comparison, we reduce 

each dataset into 𝑘-dimension uniformly. Where the number of hidden layer units 𝑘 is set as 40. 
The size of each bach is denoted as 100. And we fix the number of training as 50. For simulating 

distorted image, we add random noises into those eight image datasets. Ten samples from each 

processed dataset are demonstrated in Figure 3. 
 

 
 

Figure 3.  The samples of distorted datasets. 

 

4.3. Evaluation Metrics 

 
In this section, we mainly introduce the evaluation metric of clustering. In the final stage of 

experiment, the 𝑘-means algorithm is used to calculate performance of extracted features. 

Consider a sample dataset 𝐷 = {𝑥1, … , 𝑥𝑛}.The clusters obtained by 𝑘-means algorithm for 

clustering are denoted as 𝐶 = {𝐶1 , … , 𝐶𝑛}.Then the square error can be computed by 
 

𝐸 = ∑ ∑ ‖𝑥 − 𝑢𝑖‖2                                  
2

𝑥∈𝐶𝑖

𝑘
𝑖=1 (17) 

 

where 𝑢𝑖 =
1

|𝐶𝑖|
∑ 𝑥𝑥∈𝐶𝑖

.The core of algorithm is to minimize 𝐸. 

Clustering accuracy is an important reference index of clustering performance [25]. It is used to 

compare predicted labels with real labels provided by data. The value of clustering accuracy can 
be presented as 

 

𝐴𝐶𝐶 =
∑ 𝛿(𝑠𝑖,𝑚𝑎𝑝(𝑟𝑖))𝑛

𝑖=1

𝑛
                     (18) 

 

where  𝑟𝑖  and 𝑠𝑖  represent predicted label and real label separately. The number of data is set 

as 𝑛. 𝛿(𝑥, 𝑦) = 1 if 𝑥 = 𝑦, otherwise𝛿(𝑥, 𝑦) = 0.Normalized mutual information can be used to 

measure the similarity of clustering results [26]. Consider a mutual information 𝐼 = (Ω; 𝐶).It 

represents the increase of category information Ω by giving cluster information 𝐶. Then 

normalized mutual information is presented as 
 

𝑁𝑀𝐼 =
𝐼(Ω;𝐶)

(𝐻(Ω)+𝐻(𝐶))/2
                          (19) 

 

where 𝐻 means entropy. Adjusted Rand index is a functionto calculate the distribution similarity 

of two labels [27]. Thisfunction has no requirements for the definition form of label. 

 

𝐴𝑅𝐼 =
∑ (

𝑛𝑖𝑗

2
)𝑖𝑗 −[∑ (

𝑎𝑖
2

)𝑖 ∑ (
𝑏𝑗

2
)𝑗 ]/(

𝑛
2

)

1

2
[∑ (

𝑎𝑖
2

)𝑖 +∑ (
𝑏𝑗

2
)𝑗 ]−[∑ (

𝑎𝑖
2

)𝑖 ∑ (
𝑏𝑗

2
)𝑗 ]/(

𝑛
2

)
               (20) 
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where 𝐴𝑅𝐼 ∈ [−1, 1].The higher the value, the more consistent the clustering results with the 

real situation. 
 

4.4. Experimental Results  
 

In this section, comprehensive experiments are presented. In addition to denoising feature 

learning model, we run several classical feature learning algorithms for comparison. These 

methods include PCA, NPE, LPP, Isomap, LLE, IsoP and auto-encoder. For assessing the 

performance of feature representation, we choose 𝑘-means algorithm to make a clustering. Three 

popular evaluation metrics ACC, NMI and ARI are used for revealing an intuitive result. 

Meanwhile the original data without dimensionality reduction is also sent into 𝑘-means as the 
baseline. Finally, all the experimental results on eight processed image datasets are displayed in 

three tables.  

 

From the Table 2 - 3, it is intuitive that the low-dimensional feature representations extracted by 
denoising model run a better performance. In Table 2, the clustering accuracy of denoising model 

ranks first on seven image datasets except USPS. In Yale-B dataset, the feature representations 

extracted via denoising model perform a favorable result compared with the baseline. In Table 3, 
the performance of denoising model reach first on six datasets. On Chars74K image dataset, 

normalized mutual information of denoising model is 60.8% while baseline is 45.3%, with a 

greater improvement. On CIFAR-10, denoising model reaches second best result which is close 
to locality preserving projections. In Table 4, the adjusted rand index of denoising model ranks 

first on six datasets while classic unsupervised feature learning algorithms also perform well. 

Especially on the extended Yale Face Database, the adjusted rand index of denoising model 

reaches a bigger improvement.  
 

Table 2. Clustering accuracy (mean% + std%) with different unsupervised feature learning methods 

 
dataset/metho
d 

Chars74
K 

USPS Yale-B COIL-20 ORL CIFAR-
10 

F-
MNIST 

SMSHP 

Baseline 31.8±0.9 65.6±1.8 11.3±0.4 56.1±2.7 63.6±1.8 23.9±0.3 54.4±1.2 38.7±1.5 

PCA 34.5±1.6 68.2±2.3 12.2±0.3 65.7±1.4 64.8±2.6 24.5±1.2 59.3±0.7 36.5±1.1 

NPE 35.6±0.8 71.3±1.8 28.2±1.5 61.3±2.3 72.7±1.4 21.3±0.5 52.4±0.9 36.8±1.2 

LPP 33.2±1.5 68.5±1.4 30.3±1.4 66.7±0.5 68.6±2.5 24.2±0.8 58.1±3.3 38.3±0.9 

Isomap 24.6±0.3 67.3±2.6 32.6±2.1 68.6±1.7 59.8±2.6 23.9±1.2 57.2±2.9 34.5±0.4 

LLE 28.9±1.2 64.2±1.5 27.4±1.7 60.2±1.1 53.6±1.7 25.4±2.3 53.7±1.8 33.6±1.5 

IsoP 34.3±2.5 70.2±0.9 25.3±0.8 65.3±2.8 62.4±2.1 26.3±1.6 54.2±1.3 35.2±1.2 

Auto-encoder 32.6±1.2 67.4±2.4 19.7±0.4 59.9±1.3 65.6±3.5 29.7±0.9 58.2±2.6 34.3±0.8 

Ours 37.2±0.6 69.5±0.8 33.8±1.2 70.4±2.2 74.5±2.3 32.5±1.1 61.5±1.4 39.9±0.6 

 

Table 3. Normalized mutual information (mean% + std%) with different unsupervised  

feature learning methods. 

 
dataset/metho
d 

Chars74
K 

USPS Yale-B COIL-20 ORL CIFAR-
10 

F-
MNIST 

SMSHP 

Baseline 45.3±0.7 63.6±1.6 12.8±0.5 74.9±1.8 73.4±2.2 8.6±0.6 54.5±1.4 7.1±0.8 

PCA 50.6±2.3 61.0±0.2 14.3±0.4 76.7±2.3 76.8±1.5 8.2±0.4 53.2±1.6 8.4±0.6 

NPE 55.5±0.8 63.2±0.8 37.6±1.6 74.6±0.6 80.2±3.2 8.5±0.3 52.1±0.7 11.9±0.8 

LPP 53.4±0.9 67.6±1.9 35.4±0.3 76.8±1.4 77.9±1.8 9.8±0.6 58.7±2.2 9.3±1.2 

Isomap 45.3±1.2 65.9±2.2 36.8±2.0 73.5±2.1 74.1±2.3 9.2±0.1 54.6±0.8 8.8±0.7 

LLE 52.7±1.6 63.2±2.8 23.5±1.4 72.3±4.2 73.8±2.7 7.6±0.2 53.4±0.6 12.0±0.5 

IsoP 49.6±2.3 58.3±1.5 29.3±2.3 78.5±3.6 75.7±1.3 8.2±0.7 52.6±0.9 9.2±0.3 

Auto-encoder 49.2±1.5 56.7±2.4 22.6±1.2 75.2±1.9 77.3±2.6 7.4±0.3 56.2±1.8 8.3±0.5 

Ours 60.8±2.2 68.1±2.3 39.6±0.8 79.1±2.3 82.4±2.4 9.6±0.2 62.5±1.3 10.1±0.6 
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Table 4. Adjusted rand index (mean% + std%) with different unsupervised  

feature learning methods. 

 
dataset/metho
d 

Chars74
K 

USPS Yale-B COIL-20 ORL CIFAR-
10 

F-
MNIST 

SMSHP 

Baseline 20.8±0.9 53.6±2.2 2.3±0.2 50.7±3.6 48.4±2.1 4.5±0.6 38.6±0.9 4.4±0.2 

PCA 23.5±0.4 60.2±0.6 3.5±0.4 55.3±1.8 49.6±2.0 5.1±0.6 41.2±0.7 6.1±0.3 

NPE 24.3±2.2 56.6±0.7 13.6±0.3 53.3±2.5 53.6±1.4 5.7±0.4 33.7±1.3 5.4±0.1 

LPP 20.7±0.8 62.2±1.3 12.4±0.5 61.8±3.2 46.8±2.3 4.2±0.1 42.3±2.5 4.8±0.9 

Isomap 21.1±0.6 62.7±2.4 13.8±0.2 60.5±1.3 38.9±0.6 4.7±0.6 40.7±1.8 3.7±0.2 

LLE 19.3±0.4 56.7±3.2 9.2±0.8 51.4±2.6 45.6±0.7 6.1±0.2 46.3±0.7 4.5±0.3 

IsoP 22.5±0.3 58.2±2.8 11.8±0.7 64.3±3.2 40.4±1.5 6.7±0.5 43.6±1.2 5.1±0.2 

Auto-encoder 23.2±0.6 61.8±3.5 6.9±0.2 52.5±2.4 42.3±2.3 7.3±0.8 42.1±0.5 7.3±0.6 

Ours 26.4±0.5 65.9±2.3 14.6±0.4 54.9±2.1 55.7±1.6 7.5±0.4 44.7±0.3 8.8±0.4 

 

5. CONCLUSION  
 

In this paper, facing the problem regard to high-dimensional of distorted images, an end-to-end 

denoising feature learning model was proposed to obtain high robust feature representations. 

Then the extracted features were evaluated by 𝑘-means clustering. Compared to other 
unsupervised feature learning methods, extensive experiments on eight processed image datasets 

demonstrated that denoising model ran a competitive performance. The low-dimensional 

representation could replace the original dataset primely. But in the experiment, it was obvious 
that larger dimensions and categories caused a bad influence on clustering performance. In the 

future work, we will be concerned with the image datasets which own many categories. We may 

add semi-supervised training to attempt a better result.  
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