
Dhinaharan Nagamalai et al. (Eds): CSEIT, WiMoNe, NCS, CIoT, CMLA, DMSE, NLPD - 2020 

pp. 255-273, 2020. CS & IT - CSCP 2020                                                   DOI: 10.5121/csit.2020.101121 

 
A CASE STUDY ON MAINTAINABILITY OF 

OPEN SOURCE SOFTWARE SYSTEM JABREF 
 

Denim Deshmukh, Ravi Theja Kataray and Tallari Rohith Girikshith 

 

Blekinge Tekniska Högskola, Sweden 

 

ABSTRACT 
 
Maintainability is a major aspect of any software project; maintainability refers to the ease by 

which software can adapt to changes. There are various factors that affect the effort required 

for maintenance, in this paper we conducted a study to observe the extent up to which a metric 

could affect the maintainability of a software. We have considered various versions of JabRef 

and studied how maintainability of various packages had changed across versions. This is done 

using a framework called Goal Question Metric(GQM) which provides a systematic procedure 

to study various attributes of entities. Data of the attributes are collected using various Object-

Oriented code metric tools which provide numerical data to compare the attributes between the 

versions. The data collected is visualized to answer the questions formulated which indeed tends 

to achieve the goal to identify the modules that are hard to maintain. 

 

KEYWORDS 
 
Size, Structure, Complexity, Maintainability, Understandability & Goal Question Metric (GQM) 

approach. 

 

1. INTRODUCTION 
 

This Software quality plays an important role while it comes to the development of the software 

product as it provides a brief ideology about the software product for the developers or the end 

users for further changes or modification that would be needed as the technology advances 

rapidly in the future. Hence, assessing the software quality is done using the measurement units 

like code size, coupling, maintainability, cohesion and structure of the product. Since software 

maintenance is critical, prospective developers should consider the maintainability aspect as a 

high priority during software system development [4]. In this study we have observed various 

metrics that assess various attributes over the Object-Oriented (OO) system JabRef. The software 

maintainability being an external attribute and is complicated and vital to calculate to know as it 

is affected by various factors. Maintainability is an important quality attribute, but it is difficult to 

estimate, because it involves making predictions about future changes that will occur in a 

software module, once it has been deployed [3]. As the Object-oriented based software systems 

are used more widely and often in all the software systems, they are different from the non-OO 

system due some programming concepts like inheritance, encapsulation. Hence, we cannot apply 

the well-known software metrics used to predict the non-OO software [3]. Many various studies 

have been done to provide the OO metrics that are reliable and effective to measure the 

maintainability of the product. In this paper a detailed analysis of various versions on an object-

oriented project namely JabRef is conducted to assess the packages which are high to maintain. 

 

 

 

http://airccse.org/cscp.html
http://airccse.org/csit/V10N11.html
https://doi.org/10.5121/csit.2020.101121


256 Computer Science & Information Technology (CS & IT) 

1.1. Summery 

 
This paper is divided into various sections Firstly analysis will be carried out by a Goal Question 

Metric (GQM) framework in which Goals to be achieved will be mentioned and various 

questions will be formulated questioning about the attributes of the entities and the metrics which 

will be best suited to answer the question will be mentioned, suitable scales for measuring 

metrics will be selected, tools which support object oriented metrics will be used to collect data 

of various versions, visualization methods like bar graphs , flow charts, tables will be uses to 

analyse the collected data. Later results of the analysis will be discussed along with the change 

log and related or similar work done on analysis of maintainability on various versions of JabRef.  
 

2. RESEARCH METHODOLOGY 
 

2.1. Study Type 
 

Being an empirical study, Case study would be the suitable methodology. Case study is an 

empirical method aimed at investigating contemporary phenomena in their context [1]. This study 

is flexible in nature and could be conducted in real life context which makes it suitable for case 

study. The objective of this study is to explore for the least maintainable package which requires 

more effort and focus when compared to others. Such an objective can be achieved by analysing 

the various factors and metrics in a software. 

 

2.2. System Considered for the Study 
 

In this study we have considered an open source software called JabRef a cross-platform citation 

and reference management tool. The study is done on 10 recent/stable releases which are 5.0, 4.3, 

4.2, 4.1, 4.0, 3.8, 3.7, 3.6, 3.5, and 3.4 versions. JabRef is developed in an object-oriented 

approach using Java Language. Source code, previous releases and related data was collected 

from its GitHub repository [7]. 

 

2.3. Study Design 
 

Design for the case study and analyses in phases as following steps:  

 Define a Goal Question Metric based on the template.  

 Define Study type and provide justification for the specific study type.  

 Define metrics to measure and justify the use of specific metrics.  

 Define Question, Entities, attributes and relevant metric to give answer and result.  

 Collect the data with the tool and analyse the data for results. 

 Answer the question and provide analysis and overall evaluation.  

 Discuss the reflection on the project and related works.  

 

2.4. Data Collection 
 

2.4.1. Quantitative Data 

 

The qualitative data is collected by using three metrics extraction tools which are metrics 

reloaded, lizard and maintainability index. 

 

Metrics Reloaded: Metrics Reloaded is a Plugin to eclipse IDE and able to extract various metrics 

such as Ca, Ce, CBO, LOC, LCOM, DIT and WMC form Java source code. This tool can extract 



Computer Science & Information Technology (CS & IT)                                257 

metrics at package level and support various suits such as Martin Suit and CK suit etc. This tool 

can extract various metrics and have an option to extract metrics in CSV (Comma-Separated 

Values) or XML format. 

 

Lizard: Lizard is a metric extraction tool written in python. This tool is an open source tool and 

available in form of a python library but could extract metrics from the source code written in 

various programming languages. It is used to extract metrics such as Cyclomatic Complexity, 

Average cyclomatic complexity and Line of Code etc. This tool can be used at package, project 

as well as class level. It is a command line tool and supports CSV, text file-based output. 

 

Maintainability Index: It is an extension of the lizard tool used to extract Maintainability Index at 

package, project and class level and support CSV output like the Lizard tool. 

 

2.4.2. Quantitative Data 
 

Change logs are analysed to find major changes in the project and to relate the report [14] with 

the data extraction. 

 

3. GQM TREE 
 

Goal-Question-Metric (GQM) approach to process metrics provides a framework for deriving 

measures from organization or business goals. According to Basili’s GQM process, the first 

phase is to develop project goals [5][6].Then in the second phase we develop questions that 

define the goals as completely as possible in a quantifiable way. Then in the third phase we 

specify the metrics to be collected to answer the questions we defined. In the fourth phase we 

define data collection and in the last phase we collect data, validate it and provide feedback for 

corrective measure [5][6].  

 
Table1 GQM Tree 

 

Goal 

Goal 1: To measure maintainability of various packages. 

Q1 How maintainable the packages are with respect to size and structure? 

Q2 How does complexity of the packages change the maintainability of the product? 

Q3 To what extent does the understandability of each package provide the ease of 

maintenance of the product? 

Q4 How does the cohesive nature of packages influence the maintainability of the 

product? 

Q5 How does the maintainability change with instability in terms of coupling? 

 

 

 

 

 

 

 

 

 

 

 

 



258 Computer Science & Information Technology (CS & IT) 

Table2 Metrics Table 

 

The metrics 

that are 

considered in 

this study for 

the evaluation 

of the JabRef 

systems are as 

follows:S.no 

Metrics Metrics Full Name 

M1 DIT Depth of Inheritance Tree 

M2 LOC Line of Code 

M3 LCOM Lack of Cohesion of Method 

M4 v(G) Cyclomatic complexity 

M5 Ca Afferent Coupling 

M6 Ce Efferent coupling 

M7 MI Maintainability Index 

M8 CR Comment Ratio 

M9 DIT Coupling between object classes 

M10 LOC Weighted methods per class 

 

 Justification 
 

1) DIT: This metric gives information about the inheritance within a class by measuring the 

number of nodes between the root node and given node within a class hierarchy, which 

indirectly describes the structure of the code. This metric was obtained in class level which 

was aggregated to package level by taking the mean values of all the classes in a specific 

package. 

 

2) LOC: This is the simplest and most reliable metric to measure the size of a package. 

 

3) LCOM: This metric measures the cohesion between methods of a class. Cohesion is the 

interdependence of methods in a class, which may affect the maintainability of a package and 

describes the structure of Source code. Hence this metric is considered to measure size and 

structure of a package. This metric was obtained in method level which was aggregated to 

package level by taking the mean values of all the methods of a class in a specific package.  

 
4) Cyclomatic complexity v(G): This metric is essentially used to measure and denote the 

complexity of code. It measures the number of linearly independent paths in the program. It 

is also a basis for calculating the maintainability index. This metric can be obtained on class 

level and averaged on package level. 

 

5) Ca: This metric measures the number of classes in other packages that are dependent on the 

classes in the package. This metric was obtained on package level. This metric is obtained on 

package level and shows the dependency of other packages on the package in scope. It is also 

known as incoming dependency. Afferent coupling will have a significant effect on 

maintainability. 

 

 

6) Ce: This metric measures the dependency of the class in scope on the other classes of the 

package. This metric is obtained on package level and shows the dependency on other 



Computer Science & Information Technology (CS & IT)                                259 

packages in scope. It is also known as outgoing dependency. Efferent coupling has a 

significant effect on maintainability. 

 

7) MI: This metric measures the maintainability and give value between zero to hundred, zero 

means very hard to maintain and hundred means easy to maintain. This metric measure 

maintainability using Cyclomatic complexity, Line of code and Halstead Volume. This 

provide an insight to the ease of maintenance with respect to complexity 

 

8) CR: This metric defines the ratio of commented lines to lines of code of that particular 

package which helps to know exactly how many lines of code (LOC) are exactly available 

per package hence would be useful while estimating the efforts required during the 

maintenance of that particular package. 

 

9) CBO: Also referred to as coupling between objects usually defines the coupling between the 

classes for each class to which they are coupled with. This indeed helps us to know the 

coupling between the packages and helps further while the product is modified or analysed 

for maintenance. 

 
10) WMC: Also referred to as a weighted method per class usually describes the number of 

methods present per class which helps to know exactly how much effort will be required to 

maintain that particular class in maintenance phase which indeed helps to prevent excess cost 

and time. 

 

3.1. Entities, Attribute and the Metrics 
 

Table 3: Entities, Attribute and Metrics of Question Table  

 

Q1: How maintainable the packages are with respect to size and structure? 

Entity Package 

Attribute1 Size 

Attribute2 Structure 

Attribute Type Internal 
Metric1 LOC 

Metrics2 LCOM, DIT, CBO 

 
Q2: How does complexity of the packages change the maintainability of the product? 

Entity Package 

Attribute Complexity 

Attribute Type Internal 

Metric CBO, WMC, v(G), DIT 

 
Q3: To what extent does the understandability of each package provide the ease of 

maintenance of the product? 
Entity Package 
Attribute Understandability 
Attribute Type Internal 
Metric Ca, Ce, CR, WMC 

  

 



260 Computer Science & Information Technology (CS & IT) 

Q4: How does cohesive nature of packages influence the maintainability of the product? 

Entity Package 

Attribute Cohesion 
attribute Type Internal 

Metric LCOM 

 
Q5: How does the maintainability change with instability in terms of coupling? 
Entity Package 
Attribute Coupling 
Attribute Type Internal 
Metric Ca, Ce 

 

Justification: Supportive aspects like why the certain metrics are selected for that internal 

attribute.  

 

1) Understandability: It is an important attribute in software development process as it plays a 

vital role in maintaining the software product as understanding the models can help in 

modifying, analysing the system for later requirements and advancements which indeed save 

a lot of cost and time for avoiding the implementation errors[19]. Hence understandability is 

affected with various factors hence out of those many factors Comment ratio (CR), efferent 

coupling (Ce)and afferent coupling (Ca) are considered [16] in this study. 

 

2) Size and Structure: Size of a package could be measured using lines of code(LOC) and 

number of functional points(FP), but by using these metrics one cannot draw any conclusion 

regarding the maintainability of the packages as there are other metrics related to the 

structure of the code which should be considered to provide a better picture on the overall 

maintenance of the packages. CK metric suite [13] provides various metrics which could 

depict the structure of the code like Depth Inheritance Tree(DIT)[11][12], Lack of Cohesion 

between Methods (LCOM)[10]. 

 

3) Complexity: Maintainability is highly dependent on the complexity of the software. 

Complexity is one of the most important factors affecting the overall maintainability of a 

software. Software complexity is described as the degree of difficulty in analysing, 

maintaining and modifying software[3].The cyclomatic complexity is a measurement of 

independent paths in a program and Average cyclomatic complexity for a package means that 

every class on average in a program has that much cyclomatic complexity. Similarly, the 

Weighted method per class provides us with an estimate for complexity for methods [4]. 

Coupling between object classes is the count of other classes being used which provide help 

in visualizing dependencies. The depth of inheritance provides a visualization ability to 

understand the abstraction level in the program and give a prospective of depth of abstraction 

in the program. Hence v(G), DIT, CBO and WMC are used to calculate complexity. 

 

3.2. Scale Type 
 

This section briefly discusses the scale type and its utilization in this study and in-detail 

justification is provided for selecting the scale type for the suitable metrics. Two different types 

of scales were considered in this paper.  

 

Ratio: As this scale is the best suitable for the ratio values and the measurement of the metrics 

like CBO and comment ratio are taken under this scale type as their measurement values start 

from 0(zero) and increase gradually at equal intervals.  



Computer Science & Information Technology (CS & IT)                                261 

 

Absolute: This scale is usually associated with the number of the entity which is in the scope to 

measure. Hence, the measurement of the metrics like WMC, Ca and Ce are taken under this scale 

type as their measurement values are exact counted entities. 

 
Justification 

 

CBO: The best scale for measuring CBO is the absolute scale as it is the measure of the number 

of classes coupled to a class. 

 

 CR: The ratio scale is selected to represent the comment ratio as this is the best suitable scale to 

represent the ratio values better than any other scale types.  

 

WMC: Ratio scale is taken into consideration for the weighted method per class as it is the best 

suitable for the arithmetic analysis and most of the measurement values have been ratio of 

complexity and number of elements which are indeed taken for ratio scale type.  

 
DIT: According to the definition of DIT it is the count of number of nodes between root node to 

leaf node which could be measured using absolute scale.  

 

LOC: Absolute scale is the best suitable scale to measure LOC as an exact count of the source 

line of code can be calculated at package and class level.  

 

LCOM: Ratio scale is the best suitable scale to measure this metric as representing a link between 

methods and local variables is done for more than one class.  

 

v(G): Cyclomatic complexity measures the number of linearly independent paths in a program. 

For calculating absolute values and representing on a scale Absolute scale is best to be used in 

this case. 

 

 Ca: The best scale fit for Afferent coupling is absolute since it represents the absolute numerical 

value of the number of packages on whom the package in scope is dependent. 

 

 Ce: The best scale fit for Efferent coupling is absolute since it represents the absolute numerical 

value of the number of packages who are dependent on the package in scope.  
 

4. RESULT 
 

The Study was formed according to the Goal Question Metrics tree and analysed to find the 

answer to the question for the goal. All 10 versions of JabRef were analysed and compared to 

form the results. An overview of JabRefprojects according to size with respect to number of 

classes and Line of code for every version is given in the table below. 

 

 

 

 

 

 

 

 

 

 



262 Computer Science & Information Technology (CS & IT) 

Table 4. Overview Table  

 
Version LOC Number of Children(NOC) 

3.4 101246 183 

3.5 102112 184 

3.6 106703 239 

3.7 113227 245 

3.8 115359 250 

4.0 123062 334 

4.1 125653 340 

4.2 126238 345 

4.3 126563 373 

4.5 119085 331 

 

Based on the goal and analysing the software there were 10 main packages or called modules 

were found in the main directory and the analysis is done on these packages. These packages 

were significant and persistent throughout all the versions.  

 

 net.sf.jabref.cli as cli  

 net.sf.jabref.logic as logic  

 net.sf.jabref.migration as migration 

 net.sf.jabref.model as model  

 net.sf.jabref.preferences as preferences  

 net.sf.jabref.pdfimport as pdfimport 

 net.sf.jabref.gui as gui 

 net.sf.jabref.collab as collab  

 net.sf.jabref.shared as shared  

 

Some packages were there in the project which were either very small or merged in some other 

packages. There packages are listed below  

 

 net.sf.jabref.architecture as architecture  

 net.sf.jabref.external as external  

 net.sf.jabref.sql as sql 

 net.sf.jabref.util as util  

 net.sf.jabref.exporter as exporter  

 net.sf.jabref.specialfields as specialfields 

 net.sf.jabref.bst as bst 

 

4.1. Analysis of Size and Structure  
 

In this section Q1 of GQM is answered providing a detailed analysis on the effect of size and 

structure on the maintainability of the product using DIT, LOC, LCOM metrics. The data is 

collected using Metrics Reloaded plugin installed to IntelliJ IDEA  

 

DIT metric values obtained are depicted below in a tabular form:  

 

 

 

 

 

 

 



Computer Science & Information Technology (CS & IT)                                263 

Table 5. DIT table 

 
DIT 

 V 3.4 V3.5 V3.6 V 3.7 V 3.8 V 4 V 4.1 V 4.2 V 4.3 V 5 

Architecture      0 0 0 0 0 

Cli 1 1 1 1 1 1 1 1 1 1 

Logic 1.1 1.1 1.11 1.15 1.14 1.15 1.15 1.16 1.16 1.15 

Migration 1 1 1 1 1 1 1 1 1 1 

Model 1.13 1.12  1.16 1.17 1.14 1.14 1.16 1.15 1.17 

Preferences   1.43 1.3 1.3 1.27 1.27 1.27 1.27  

Styletester          1 

Pdfimport 2.25 2.25 2.25 2.25 2.25 1 1 1 1  

Gui 2.56 2.57 2.48 2.46 2.47 2.12 2.11 2.08 2.08 1.29 

Collab 1.58 1.58 1.58 1.61 1.61 1.33     

Shared   1.46 1.53 1.53 1.53 1.53    

 

Maintenance of a product or code is directly proportional to DIT value i.e., maintainability 

decreases with increase in DIT value from our observations package “model” has a gradually 

increasing DIT value and could be classified as high to maintain. “GUI” package has gradually 

decreasing values over versions, which indicates low maintenance and frequently updated 

versions. “pdfimport” package had a major update from V3.8 to V4.0 decreasing DIT values 

indicates low maintenance of the package. Rest of the packages are classified into moderate level 

maintenance and low maintenance categories depending on their mean values across the versions 

which is discussed in later sections of the paper. 

 

Maintenance is directly proportional to the product size in terms of Line of Code(LOC). The 

metric value obtained are depicted below in tabular form:  

 
Table 6. LOC table 

 
LOC 

VERSION V 3.4 V3.5 V3.6 V3.7 V3.8 V 4 V4.1 V4.2 V 4.3 V 5 

Architecture      9 9 9 9 9 

Cli 714 727 1050 1060 1062 1073 1073 946 946 885 

Logic 25861 25717 35308 34295 34625 36205 37066 39369 39429 40609 

Migration 324 324 344 343 412 488 530 650 669 564 

Model 5463 5567 6108 11946 11749 12374 12346 12665 12678 12843 

Preferences   1435 1750 1750 1953 1961 2088 2088 2336 

Styletester          561 

Pdfimport 485 485 450 474 474 478 478 473 473  

Gui 41282 42265 48735 52236 53165 56494 58590 58365 58452 47818 

Collab 1784 1784 1574 1493 1482 56594     

Shared   1208 1659 1661 1662 1681    

 

In “Model” package LOC has increases drastically from V3.6 to V3.7 and has a considerable 

change in LOC on further packages, increasing the maintenance of the package as LOC is 

directly proportional to maintenance of the product.  

 

Cohesion is the inter-relatedness among class members and methods of a class. Cohesion has a 

negative effect on the complexity of the code, increasing the maintenance of the product. The 

metric to measure cohesion is Lack of Cohesion between Methods (LCOM). Greater LCOM 

values indicate very poor cohesion between methods of a class. LCOM metric is inversely 

proportional to maintenance of the code. The following table depicts LCOM values obtained by 

using Metric reloaded tool. 

 

 



264 Computer Science & Information Technology (CS & IT) 

Table7. LCOM Table 

 
LCOM 

VERSION V 3.4 V3.5 V3.6 V3.7 V3.8 V 4 V 4.1 V 4.2 V4.3 V 5 

Architecture      0 0 0 0 0 

Cli 2.25 2.25 1.56 1.56 1.56 1.56 1.56 1.62 1.62 1.86 

Logic 1.77 1.78 2.03 1.94 1.94 1.99 2.04 2.07 2.09 2.13 

Migration 2 2 2 2 1.67 2.33 2.33 2 1.2 1.2 

Model 1.91 1.94 1.8 2.22 2.03 2.25 2.25 2.28 2.31 2.49 

Preferences   2 Y 2.36 2.33 2.33 2.33 2.33 2.35 

Styletester          2.5 

Pdfimport 1.75 1.75 1.75 2 2 2 2 2 2  

Gui 1.79 1.77 1.81 1.77 1.78 1.79 1.78 1.81 1.81 1.98 

Collab 1.84 1.84 1.84 1.89 1.89 1.89     

Shared   2.14 1.95 1.95 1.95 1.95    

 

“cli” package is frequently updated over versions and has no pattern which depicts instability of 

the package. ”Migration” package had a constant value from V3.4 to V3.7 then the value was 

gradually increasing up to 4.2 and a sudden fall in LCOM value was noticed from V4.2 to V5.0 

indicating low maintenance required to handle the package.  

 

4.2. Analysis on the Understandability 
 

Here with these metrics we have successfully discussed and found the suitable answers for the Q3 

and the following data to prove those results was collected from the MetricsReloaded plugin 

installed in the IntelliJ IDE. 

 

The results collected from the tools for the Ca metrics is shown in the table below:  

 
Table8. Ca Table 

 

Ca 

VERSIONS V 3.4 V3.5 V3.6 V 3.7 V3.8 V 4 V 4.1 V 4.2 V 4.3 V 5 

Architecture      0 0 0 0 0 

Cli 5 5 5 5 5 5 5 5 5 6 

Logic 23 10 12 12 7 6 6 6 6 3 

Migration 2 2 2 2 2 2 2 5 5 5 

Model 17 32 31 43 54 55 54 59 59 31 

Preferences   64 63 65 69 70 65 65 79 

Styletester          0 

Pdfimport 6 6 6 6 6 6 6 6 6  

Gui 282 280 271 267 272 351 358 352 352 202 

Collab 13 13 13 13 13 13     

Shared   6 11 11 11 11    

 

Afferent coupling is measured and shown in the table. With increase in Afferent coupling the 

understandability decreases, since the dependency of the class on other packages is measured by 

afferent coupling which means increase in value of afferent coupling means more dependency on 

other packages. This dependency on other packages makes the program hard to understand. From 

the table three packages “model”, “preferences” and “gui” are having high value of afferent 

coupling. The model package shows an increase of afferent coupling value from version 3.4 to 

version 3.8 and then approximate constant value till version 4.3 and then a decrease to a 

relatively low value which show the scope for maintainability. The package preferences have also 



Computer Science & Information Technology (CS & IT)                                265 

relatively high value from version 3.6 to version 5.0. The package logic stands different and has 

very high afferent coupling value relative to all other packages, it shows a significant increment 

from version 3.8 to version 4.0 and also a drop from version from 4.3 to version 5.0 but still the 

value is relatively very high. This shows the package “gui” is hard to understand thus hard to 

maintain.  

 

Efferent coupling is measured and shown in table with increase in efferent coupling the 

understandability decreases. The dependency of other packages on the class in scope is measured 

by efferent coupling. This increase in dependency of other packages on this class in scope makes 

understandability low. The increase in efferent coupling reduces the ease of maintenance. As we 

can observe the graph for the package GUI the initial versions had high maintenance as the Ce 

values of the package was large and later versions the Ce values have reduced, and the 

maintenance of the package reduced. In the package cli package we observe that the initial 

versions have exceptionally low Ce values and had low maintenance and in the later versions has 

slightly increased and resulted in the high maintenance of the package. In the package migration 

we also observe that the initial versions have exceptionally low values of Ce and had low 

maintenance of the package and in further versions the values have slightly increased making the 

package high maintenance when compared to the initial versions. 

 
Table9. Ce Table 

 

Ce 

VERSIONS V3.4 V3.5 V3.6 V3.7 V3.8 V 4 V4.1 V4.2 V4.3 V5 

Architecture      0 0 0 0 0 

Cli 24 24 47 50 50 50 50 46 46 43 

Logic 9 8 8 8 4 4 4 4 4 3 

Migration 12 12 17 17 24 25 25 37 37 33 

Model 6 7 7 8 8 6 6 6 6 2 

Preferences   25 38 38 44 44 47 47 70 

Styletester          4 

Pdfimport 20 20 22 27 27 28 28 26 26  

Gui 459 457 421 437 411 442 446 432 432 229 

Collab 85 85 89 85 85 87     

Shared   14 22 22 22 22    

 

It was also observed for the CR metrics that the maintenance is inversely proportional to the 

metrics CR. The results that were collected for the CR metrics for the packages of 10 different 

versions are as follows: 

 
Table10 CR Table      

 
Comment Ratio 

VERSIONS V 3.4 V3.5 V3.6 V3.7 V3.8 V4 V4.1 V4.2 V4.3 V5 

Cli 0.067 0.083 0.08 0.08 0.08 0.08 0.08 0.054 0.054 0.055 

Logic 0.286 0.291 0.202 0.191 0.191 0.185 0.187 0.184 0.183 0.176 

Migration 0.256 0.256 0.209 0.209 0.199 0.178 0.181 0.153 0.153 0.125 

Model 0.3 0.299 0.265 0.256 0.252 0.246 0.247 0.244 0.244 0.237 

Preferences   0.132 0.11 0.106 0.103 0.105 0.099 0.099 0.096 

Pdfimport 0.169 0.169 0.095 0.09 0.09 0.089 0.089 0.088 0.088  

Gui 0.177 0.178 0.127 0.125 0.124 0.119 0.117 0.115 0.115 0.089 

Collab 0.237 0.237 0.128 0.138 0.137 0.138     

Shared   0.236 0.203 0.203 0.203 0.201    

 

According to the above results generated and the conclusions drawn from ”logic” package the 

outputs that had been collected and observed the variations keenly in this package declares us that 

the Code to comment ratio in the version 3.4 and 3.5 we can observe a negligible increase of the 



266 Computer Science & Information Technology (CS & IT) 

comment ratio and later it had an exceptional decrease in the 3.6 version and had gradually 

decreased in the further versions but an except case where a negligible increase of the ratio 

between 4.0 and 4.1 versions. Hence, the decrease in the values are only in the initial versions 

and thus 3.6 version the package is more difficult to maintain than the 3.4 and 3.5 versions and 

4.1 versions is easy to maintain than the 4.0 version. According to the above results generated 

and the conclusions drawn from ”GUI” package the outputs that had been collected and observed 

the variations keenly in this package declares us that the Code to comment ratio in the versions 

3.4 and 3.5 it has negligibly increased and has remarkably decreased in the next version i.e. 3.6 

version and has gradually decreased for further versions hence 4.0 version has a decreased value 

than the difficult to maintain than the previous version 3.8 and the further versions are also 

equally maintained for this package. According to the above results generated and the 

conclusions drawn from ”pdfimport” package the outputs that had been collected and observed 

the variations keenly in this package declares us that the Code to comment ratio in the versions 

3.4 and 3.5 versions is constant and has exceptionally decreased in 3.6 version and since has 

slightly decreased in further versions. Hence there is a decrease in the values in 3.5 and 3.6 

versions thus 3.6 is more difficult to maintain than the initial versions and the further versions 

have not shown any noticeable change and thus are considered to be equally maintained versions 

for these packages.  

 

4.3. Analysis on Complexity 
 

The Q2 of GQM is discussed in this part where the relation of how the complexity effect the 

maintainability of the software project. Complexity is a crucial factor in determining the ease of 

maintenance of the software project. Ease of maintaining of software depend on various factor 

but complexity is one of the important factors in determining the maintainability. Metrics as v(G), 

CBO and WMC are used to estimate complexity and maintainability relation. 

 
Table11. v(G) Table 

 
COMPLEXITY 

VERSION V 3.4 V3.5 V3.6 V3.7 V3.8 V4 V4.1 V4.2 V4.3 V5 

Architecture      0 0 0 0 0 

Cli 2.6 2.6 2.8 2.8 2.8 2.7 2.7 2.5 2.5 2.4 

Logic 3.2 3 3.2 3.4 3.3 3.2 3.2 3 3 2.9 

Migration  4.7 4.6 4.6 4.3 3.6 3.6 3 2.9 2.6 

model 2.3 2.2 2.1 2.1 2.1 2 2 1.9 1.9 2 

Preferences   1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Styletester          1 

Pdfimport 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.8 2.8  

Gui 2.5 2.5 2.5 2.5 2.5 2.3 2.3 2.2 2.2 1.8 

Collab 2.7 2.7 2.7 2.8 2.8 2.8     

Shared   1.9 1.8 1.8 1.8 1.8    

 

Cyclomatic complexity is measured with the Lizard tool and collected values are shown in the 

table. With increase in complexity maintenance also increases. The module “cli”,“pdfimport”, 

migration and logic are the modules which are showing relative high complexity. Here the logic 

module is having highest complexity among other modules and migration also have high 

complexity in initial versions but have as shown in table migration module have steady drop in 

complexity from first version 3.4 to last version 5.0 which show the scope of maintainability. The 

module logic does not show any significant drop in complexity and maintain high complexity 

value thought all versions which is from version 3.4 to 5.0 which show that module is hard to 

maintain. The module “cli” and “pdfimport” are also showing steady relatively high complexity 

and are also belong to the group which show these are hard to maintain based on their complexity 

nature.  



Computer Science & Information Technology (CS & IT)                                267 

 

The maintainability index which is calculated based on cyclomatic complexity and number of 

lines of code (LOC) and Halstead volume has can be used to see a relation between the 

complexity and maintenance and to validate the result. The maintainability index shows that the 

lower the value of maintainability index the harder is to maintain the project and higher the value 

means highly maintainable. There is a very similar patter between the maintainability index and 

the complexity, and both shows the similar result of relation between the complexity and 

maintainability. The result observed is that cyclomatic complexity is inversely proportional to 

maintainability of packages.  

 
Table12. MI Table 

 

 Maintainability Index 

VERSIONS V3.4 V3.5 V3.6 V3.7 V 3.8 V4 V4.1 V4.2 V4.3 V5 

architecture      0 0 0 0 0 

Cli 43.83 43.83 43.41 43.37 42.98 44.49 44.49 44.96 44.96 44.34 

Logic 45.04 45.33 45.1 44.83 44.96 45.62 45.8 46.03 46.1 46.21 

Migration 27.7 27.7 27.09 26.73 27.93 33.9 32.73 37 37.11 38.03 

Model 42.93 43.36 44.39 45.91 45.89 46.8 46.79 47.25 47.23 48.76 

preferences   40.55 41.47 41.28 39.5 39.48 38.44 38.44 36.7 

Styletester          53.5 

Pdfimport 39.57 39.57 39.57 38.91 38.91 36.55 36.55 36.64 36.64  

Gui 37.75 37.6 37.91 37.89 37.8 41.4 41.67 41.88 41.85 47.65 

Collab 42.23 42.23 42.28 41.99 42.12 42.11     

Shared   48.31 48.01 49.33 49.32 49.22    

 

Maintenance is directly proportional to the WMC metrics i.e. as the WMC increase it becomes 

easy to maintain the package.  

 
Table13. WMC Table 

 
WMC 

VERSIONS V 3.4 V3.5 V3.6 V 3.7 V 3.8 V 4 V 4.1 V 4.2 V 4.3 V 5 

Architecture      0 0 0 0 0 

Cli 113 113 148 148 149 152 152 136 139 18.43 

Logic 3278 3194 5265 5153 5187 5299 5416 5677 5686 5844 

Migration 41 41 44 44 51 62 69 91 91 76 

Model 742 759 760 1593 1570 1786 1784 1827 1831 1836 

Preferences   123 187 191 218 218 236 236 291 

Styletester          6 

Pdfimport 55 55 54 56 56 57 57 58 58  

Gui 4723 4830 5770 6356 6463 6851 7048 6979 6985  

Collab 199 199 199 183 183 183     

Shared   137 200 200 200 201    

 

According to the results generated and observations we here conclude that the package like ”GUI” 

the WMC metrics values have gradually decreased over the versions 3.4 to 5.0 of the JabRef 

system which makes it a low maintenance of the package. For the package ”Migration” the 

outputs that had been collected and observed the variations keenly in this package declares us that 

the WMC in the versions 3.4-3.5 and 3.6-3.7 remains constant and increase between v3.5-v3.6 

and later there is an exceptional decrease between 3.7 and 3.8 and later it increases from version 

3.8 to 4.0. And again, decreases between 4.1 and 4.2 and remains constant between 4.2 and 4.3 

and again decreases in the version 5 making the migration package low maintenance. For the 

package ”Model” the data collected and observed shows that the values were decreasing overall 

from the version 3.4 and 5.0 but had an exceptional decrease in the versions 3.6 and 3.7 and 



268 Computer Science & Information Technology (CS & IT) 

hence that makes the package model low maintenance. For the package ”Logic” the outputs that 

had been collected and observed the variations keenly in this package declares us that the WMC 

in the versions 3.4 and 3.5 there is a gradual decrease and then from the versions 3.5 and 3.6 there 

has been a remarkable increase and for later version it has been increasing since then making the 

package high maintenance package.  

 

It was also observed for the CBO metrics that the maintenance is directly proportional to the 

metrics CBO.  

 

The results that were collected for the CBO metrics for the packages of 10 different versions are 

as follows:  

 
Table14. CBO Table 

 
CBO 

VERSIONS V 3.4 V3.5 V3.6 V3.7 V3.8 V 4 V41 V 4.2 V4.3 V 5 

Architecture      0 0 0 0  

Cli 0.75 0.75 0.44 0.44 0.44 0.44 0.44 0.38 0.38 0.43 

Logic 2.62 2.51 3.18 3.25 3.31 3.4 3.44 3.38 3.39 3.53 

Migration  0 0 0 0 0.33 0.33 0.2 0.2 0.2 

Model 4.49 1.81 2.08 3.06 2.84 2.9 2.91 2.86 2.84 3.55 

Preferences 6.36  0.75 0.73 0.73 0.67 0.67 0.67 0.67  

Styletester          0 

Pdfimport 8.23 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  

Gui 10.1 4.44 4.62 5.19 5.15 4.99 5 4.92 4.93 4.84 

Collab  0.37 0.37 0.28 0.28 0.28     

Shared 11.97  1.14 1.6 1.6 1.6 1.6    

 

According to the above results generated and the conclusions drawn from it were that for “cli” 

package the outputs that had been collected and observed the variations keenly in this package 

declares us that the CBO in the versions 3.4 and 3.5 have the same constant outputs whereas, the 

later versions from the 3.6 to 4.1 had a massive decrease in the outputs values but were constant 

in all the versions further which was equal to initial versions i.e. 3.4 and 3.5 respectively. Hence 

as the CBO metrics value decreased from versions 3.4-5.0 it is concluded as a low maintenance 

package for the latest version when compared to the previous versions. According to the above 

results generated and the conclusions drawn from the package “gui” the outputs that had been 

collected and observed the variations keenly in this package declares us that the CBO for all the 

version is initially increasing from the version 3.4 to 3.7 but negligible decrease between 3.4 and 

3.5 and has further decreased from version 3.7 to 5 but negligible increase between the 4.0-4.1 

and 4.2-4.3 respectively as the values is frequently changing and the has noticeably increased 

from 3.4 version to 5.0 version hence it is high maintenance package. According to the above 

results generated and the conclusions drawn from the ”migration” package the outputs that had 

been collected and observed the variations keenly in this package declares us that for most of the 

versions the CBO has been 0 and the has rose to 0.33 from 4 version and then has been decreased 

to 0.2 from version 4.2 and further. Hence, considering the frequent change and considering the 

initial version and final version and values had increased and thus it is considered a 

highmaintenance package. 

 

4.4. Analysis on Cohesion 
 

In this part we are answering Q4 of GQM, how does cohesion effect maintainability. LCOM of 

CK metric suite is considered for analysing cohesion and maintainability relation. The data is 

collected using Metric-Reloaded Plugin with IntelliJ IDE. Observation and Reflection Cohesion 

is directly proportional to maintainability of a package i.e. with increase with cohesion package 



Computer Science & Information Technology (CS & IT)                                269 

are easy to maintain. LCOM shows the lack of cohesion between methods of a class. The greater 

value of LCOM means packages are hard to maintain. 
 

package is frequently updated over versions and has no specific pattern which shows instability 

of package. Cohesion in the migration package has constant value from version 3.4 to version3.7. 

In the later versions the package becomes a bit unstable as we go from version 3.7 to version 4.2 

and suddenly fall in LCOM value from version 4.2 to 5.0 which shows low maintenance.  

 

4.5. Overall Evaluation 
 

In this part we are answering Q4 of GQM, how does cohesion effect maintainability. LCOM of 

for overall evaluation we have processed the collected data and summarized it for more possible 

evaluation. In this section for every package all the values of the metrics are processed by mean 

and the mean is done over time to find a single value for all packages and the values are 

normalized to find comparative results. The data is processed according to the direct 

proportionality or inverse proportionality as required by values and as the result have been found 

in the above subsections.  

 
Table15. Normalised Table 

 

PACKAGE 

NORMALIZED METRIC VALUES 

DIT LCOM LOC CBO v(G) Ca Ce MI CR WMC 

Cli 0 0 0.0095 0.0998 0.5927 0.017 0.0945 0.3076 1 0.974 

Logic 0.1121 0.3131 0.6705 0.6535 0.7734 0.0304 0.0038 0.2538 0.094 0.687 

Migration 0 0.175 0 0.0514 1 0.0097 0.0482 1 0.131 1 

Model 0.1218 0.5368 0.1932 0.599 0.3831 0.1456 0.0053 0.2384 0.221 0.851 

Preferences 0.2466 0.7872 0.0283 0.1426 0.1897 0.2259 0.0972 0.5153 0.54 0.948 

Styletester 0 1 0.0018 0 0 0 0 0 0 0 

Pdfimport 0.5682 0.2324 0.0001 0.102 0.6224 0.02 0.0506 0.5846 0.536 0.712 

Gui 1 0.0907 1 1 0.4807 1 1 0.4692 0.2 0.576 

Collab 0.4487 0.1644 0.2012 0.0645 0.6325 0.0435 0.1987 0.3923 0.2 0.523 

Shared 0.4222 0.3263 0.2163 0.3078 0.2963 0.0334 0.0397 0.1384 0.0826 0.505 

 

All the packages are classified into three difficulty levels on ordinal scale as high maintainability, 

moderate maintainability, low maintainability packages. Mean values of a metric for a specific 

package is calculated and normalized according to the dependency of the metric on 

maintainability. The above table depicts the normalized values of various metrics. Depending 

upon these values packages are classified into 3 categories, then the mode represents the 

difficulty of maintenance as form difficulty level of high to low  if the mode have sufficientvalue 

to be in high difficulty level it is placed in high else it is considered for medium level of difficulty 

and still if not fit in the difficulty level it is finally in low difficulty level. 
 

 

 

 

 

 

 



270 Computer Science & Information Technology (CS & IT) 

 
Table16. Maintainability Level Table 

 

PACKAGE HIGH MEDIUM LOW FINAL MAINTENANCE LEVEL 

Cli 2 1 7 MEDIUM 

Logic 3 0 7 HIGH 

Migration 3 0 7 HIGH 

Model 1 3 6 MEDIUM 

Preferences 2 2 6 MEDIUM 

Styletester 1 0 9 LOW 

Pdfimport 1 4 5 MEDIUM 

gui 5 3 2 HIGH 

Collab 0 4 6 MEDIUM 

Shared 0 2 8 LOW 

 
Table17. Packages Maintainability Classification Table 

 
Package Maintenance Reason 

cli Medium - 

Logic High LOC,v(G),WMC,CBO 

migration High v(G),WMC 

Model Medium LCOM,CBO,WMC 

preferences Medium - 

Styletester Low - 

pdfimport Medium DIT,CR,v(G) 

gui High DIT,LOC,CBO,Ca,Ce,WMC 

Collab Medium v(G) 

Shared Low - 

 

4.6. Change log and Timeline 
 

The timeline for how the JabRef versions is released and duration between them is given in the 

figure below.  

 

 
 

Fig 1. Version Release Timeline 



Computer Science & Information Technology (CS & IT)                                271 

Table18. Change log Table 

 
Version Changes Fixed Removed 

V 3.4 18 31 6 

V 3.5 8 15 0 

V 3.6 33 44 7 

V 3.7 48 45 5 

V 3.8 17 15 0 

V 4.0 11 22 1 

V 4.1 26 28 0 

V 4.2 28 17 1 

V 4.3 9 6 1 

V 5.0 8 25 2 

 

We have observed all the 10 versions of the JabRef system namely 3.4, 3.5, 3.6, 3.7, 3.8, 4.0, 4.1, 

4.2, 4.3, 5.0 that initially in the 3.4 version there many packages like “Cli”, “logic”, ” migration”, 

“model”, “pdfimport”, “gui”, “collab”, “specialfields”, “event”, “external”, “bst”, exporter, “sql”, 

“util”, “importer” and as the new versions were introduced these packages were either removed 

or were merged in the other packages i.e. the “bst” and “specialfields” packages were removed 

and the packages like importer, exporter, external, collab were merged into the GUI package and 

che packages namely “shared”, “event”, “util”, “sql” were merged into “model” package. Hence 

as these small packages were present all in few versions and were again merged in other 

packages, we have neglected these packages during the analysis done by the metrics. From 

change log the extracted data for the issue changes in version and issue fixed and issue removed 

are shown in table below.   
 

4.7. Conclusion of Results and Future Work 
 

Proportionality of an object-oriented metric to the maintainability of a product. The relation of 

the metric and maintainability is discussed in the above sub-section of analysis and the inverse or 

direct proportionality is also discussed. We could use the study to obtain the maintainability level 

for various Object oriented  software system by considering the goal and the questions covering 

our goal and the metrics which are helpful in answering the question in scope to fulfil the goal 

and a similar approach can be applied to obtain the result to be found. 

 

As in this paper we majorly focused on factors such as complexity, size, structure and 

understandability to determine the Maintainability. The Future work for the study is to do a study 

on various Object-Oriented open source system independent of the language and to analyse the 

result to while increasing the scope of attribute and similarly increasing the scope of metrics. 

 

ACKNOWLEDGEMENTS 
 

The authors would like to thank everyone, just everyone! 

 

 

 

 

 

 



272 Computer Science & Information Technology (CS & IT) 

REFERENCES 
 
[1] Robson, Colin. (2002). Real World Research : A Resource for Social Scientists and Practitioner-

Researchers / C. Robson.  

[2] Laing, Victor Coleman, Charles: Principal Components of Orthogonal Object-Oriented Metrics. 

White Paper Analyzing Results of NASA Object-Oriented Data. SATC, NASA, 2001.  

[3] Horst Zuse. 1991. Software complexity: measures and methods. Walter de Gruyter Co., USA.  
[4] Bansal, M., Agrawal, C.P., 2014. Critical Analysis of Object Oriented Metrics in Software 

Development, in: 2014 Fourth International Conference on Advanced Computing Communication 

Technologies. IEEE, pp. 197–201. doi:10.1109/ACCT.2014.106.  
[5] V.R. Basili and D. Weiss (1984), A Methodology for Collecting Valid Software Engineering Data, 

IEEE Trans. Software Engineering, vol. 10, pp.728-738.   
[6] V.R. Basili and H.D. Rombach (1988), The Tame Project: Towards Improvement-Oriented Software 

Environments, IEEE Trans. Software Engineering, vol.14, pp.758-773.   
[7] https://github.com/JabRef/jabref   
[8] Yadav, A. and Khan, R.A., 2011, September. Class cohesion complexity metric (C 3 M). In 2011 2nd 

International Conference on Computer and Communication Technology (ICCCT-2011) (pp. 363-366). 

IEEE.   
[9] Kaur, K. and Singh, H., 2011, February. Towards a Valid Metric for Class Cohesion at Design Level. 

In 2011 Second International Conference on Emerging Applications of Information Technology pp. 

351-354. IEEE.  
[10] Al Dallal, J., 2012. Theoretical analysis for the impact of including special methods in lack-of-

cohesion computation. Procedia Technology, 1, pp.167-171.   
[11] Dubey, S.K., Rana, A., 2011. Assessment of maintainability metrics for object-oriented software 

system. ACM SIGSOFT Softw. Eng. Notes 36, pp. 1–7. doi:10.1145/2,020,976.2020983.   
[12] Sandesh Ganjare, Koustubh Kulkarni, Dinesh B Hanchate et al. Measuring Structural Code Quality 

Using Metrics. Inventi Rapid: Soft Engineering, 2015(3):1-7, 2015.   
[13] S R Chidamber and C F Kemerer. A Metrics Suite for Object Oriented Design. IEEE International 

Conference on Data Mining, 150-159, 2008.   
[14] Simon, Martin, Linus W. Dietz, Tobias Diez and Oliver Kopp. “Analyzing the Importance of JabRef 

Features from the User Perspective.” ZEUS (2019). 
[15] Al-Jamimi, H.A., Ahmed, M., 2012. Prediction of software maintainability using fuzzy logic, in: 

2012 IEEE International Conference on Computer Science and Automation Engineering. IEEE, pp. 

702–705. doi:10.1109/ICSESS.2012.6269563.  
[16] Wirotyakun, A., Netisopakul, P., 2012. Improving software maintenance size metrics A case study: 

Automated report generation system for particle monitoring in Hard Disk Drive Industry, in: 2012 

Ninth International Conference on Computer Science and Software Engineering (JCSSE). IEEE, pp. 

334–339. doi:10.1109/JCSSE.2012.6261975.  
[17]  Kaur, A., Kaur, K., Pathak, K., 2014. Software maintainability prediction by data mining of software 

code metrics, in: 2014 International Conference on Data Mining and Intelligent Computing 

(ICDMIC). IEEE, pp. 1–6. doi:10.1109/ICDMIC.2014.6954262.  

[18] Dubey, S.K., Rana, A., 2011. Assessment of maintainability metrics for object-oriented software 

system. ACM SIGSOFT Softw. Eng. Notes 36, pp. 1–7. doi:10.1145/2,020,976.2020983.  
[19] Saifan, Ahmad Alsghaier, Hiba Khateeb, Khaled. (2017). Evaluating the Understandability of 

Android Applications. International Journal of Software Innovation. 6. 10.4018/IJSI.2018010104.   
[20] Jehad Al Dallal,Object-oriented class maintainability prediction using internal quality 

attributes,Information and Software Technology,Volume 55, Issue 11,2013,Pages 2028-2048,ISSN 

0950-5849, https://doi.org/10.1016/j.infsof.2013.07.005.  
 

 

 

 

 

 

 



Computer Science & Information Technology (CS & IT)                                273 

AUTHORS  

 
Denim Deshmukh 

Denim Deshmukh is currently completing his master’s degree in Software Engineering from  Blekinge 

TekniskaHögskola, Sweden. He is looking forward for contributing to the field of  Software Engineering.  

 

Ravi ThejaKataray 

Ravi ThejaKataray currently pursuing a Master of Science in the field of Software Engineering from 

Blekinge TekniskaHögskola, Sweden. Striving hard to work in a team for a cause of gradually developing 

software methodology. 

 

Rohith Girikshith 

Rohith Girikshith is currently pursuing a Master of Science in the field of Software  Engineering from 

Blekinge TekniskaHögskola, Sweden. He is doing his research work in the  field of Software Engineering.  

 

 

 

 

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

http://airccse.org/

	Abstract
	Keywords
	Size, Structure, Complexity, Maintainability, Understandability & Goal Question Metric (GQM) approach.


